• Synthesis and Pervaporation Behavior of Polyurethane and Polymethy lmethacrylate Interpenetrating Polymer Network Membrane
  • Lee MJ, Kim WY
  • Polyurethane과 Polymethylmethacrylate 상호침투성막의 합성과 분리특성
  • 이미자, 김완영
Abstract
Interpenetrating polymer network (IPN) and blend membranes of polyurethane(PU) and polymethylmethacrylate (PMMA) were prepared and characterized by various instrumental techniques such as IR spectroscopy, DSC and SEM. The swelling behavior and pervaporation characteristics were also evaluated. PU/PMMA IPN membranes showed two broad Tg values which are very close to each other at compositions of 10 wt % and 30 wt % PMMA according to DSC and SEM. PU/PMMA IPN membrane at 50 wt % PMMA and blend membrane of linear PU/PMMA showed two Tgs and multiphase due to immiscibility. However, The PU/PMMA IPN membrane had better swelling resistance, misibility and superior separation performance compared to the blend membrane of the same composition. The swelling ratios of all synthesized membranes increased with increasing not only benzene concentration in bezene/cyclohexane mixture but also PMMA composition. All synthesized membranes had high selectivity in low benzene concentration of the bezene/cyclohexane mixture. Separation factor increased and flux decreased when PU compositions was increased.

PU/PMMA IPN막과 블렌드막을 합성하여 IR, DSC, SEM, 팽윤도 실험 및 투과증발 실험을 통하여 그 특성을 알아보았다. DSC와 SEM 실험결과 PMMA함량이 10 wt%와 30 wt%에서는 아주 가깝고 완만한 두개의 Tg를 나타내었으며, IPN55와 블렌드55의 경우 낮은 상용성으로 두개의 Tg와 multiphase를 나타내었다. 그러나 PU/PMMA IPN막이 같은 조성의 블렌드막에 비하여 좋은 상용성과 낮은 팽윤도를 나타내었고, 분리능도 우수하였다. 합성한 모든 IPN막은 PMMA함량이 증가할수록, 벤젠/사이클로헥산 혼합용액에서 벤젠농도가 증가할 수록 팽윤도는 증가하였다. 합성한 모든 IPN막은 벤젠/사이클로헥산 혼합용액중 저농도 벤젠용액에서 높은 선택도를 나타내었다. 또한 PU함량이 증가할수록 투과속도는 감소하고 선택도는 증가하였다.

Keywords: polyurethane; polymethylmethacrylate; interpenetrating polymer network; glass transition temperature; pervaporation

References
  • 1. Rautenbach R, Albrecht R, J. Membr. Sci., 7, 203 (1980)
  •  
  • 2. Aptel P, Challard N, Neel J, Cuny J, J. Membr. Sci., 1, 271 (1976)
  •  
  • 3. Binning RC, James FE, pet. Refiner, 37, 214 (1958)
  •  
  • 4. Binning RC, Lee RJ, Jennings JF, Martin EC, Ind. Eng. Chem., 53, 45 (1960)
  •  
  • 5. Dutta BK, Sikdar SK, AIChE J., 37, 4 (1991)
  •  
  • 6. Chiang WY, Hu CM, J. Appl. Polym. Sci., 43, 2005 (1991)
  •  
  • 7. Park TW, Kim HD, Polym.(Korea), 6(4), 248 (1982)
  •  
  • 8. Ostler MI, Rogers CE, J. Appl. Polym. Sci., 18, 1359 (1974)
  •  
  • 9. Uragami T, Morikawa T, Okuno H, Polymer, 30, 1117 (1989)
  •  
  • 10. Lee JH, Kim SC, Macromolecules, 19, 644 (1986)
  •  
  • 11. Patel M, Suthar B, J. Polym. Sci., 25, 2251 (1987)
  •  
  • 12. Jeon JSM.S. Thesis, KAIST (1985)
  •  
  • 13. Jeon EJM.S. Thesis, KAIST (1987)
  •  
  • 14. Chen SA, Ju HL, J. Appl. Polym. Sci., 25, 1105 (1980)
  •  
  • 15. Frisch HL, Br. Polym. J., 17(2), 149 (1985)
  •  
  • 16. Spering LHInterpenetrating Polymer Networks and Related Materials, Plenum, New York (1981)
  •  
  • 17. Frisch H, Frisch KC, Ghiradella H, J. Polym. Sci. A: Polym. Chem., 29, 1031 (1991)
  •  
  • 18. Zhou P, Frisch HL, Sergeienko N, J. Polym. Sci. A: Polym. Chem., 31, 2481 (1993)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1995; 19(3): 309-316

    Published online May 25, 1995