• Polypropylene/Ethylene- Propylene Copolymer Blends : Temperature Effect on the Mechanical Properties and Their Corresponding Microstructures
  • Choi Y, Chun BC, Hong SI
  • 폴리프로필렌/에틸렌-프로필렌 공중합체 블렌드의 온도변화에 따른 기계적 성질 및 미세구조
  • 최영대, 전병철, 홍성일
Abstract
Two types of ethylene-propylene copolymers (EPM) were melt blended with polypropylene (PP), and their tensile properties and their corresponding microstructures at various temperatures were investigated. From the tensile test, the yield stress and the Young's modulus decreased as the testing temperature increased, however the yield strain and the elongation at break increased. Generally, higher temperature affects the deformation of crystalline region by thermal activation. This induced shear yielding and crazing more easily, and resulted in an increase of toughness. From the tensile fractured surface observations via scanning electron microscopy (SEM), shear yielding and crazing were also found. The tensile fractured surfaces showed that as the EPM content increased, the shear yielding of PP matrix became dominant and resulted in an oriention hardening of PP/EPM blends.

두 종류의 에틸렌-프로필렌 공중합체 (EPM)의 양을 달리하여 폴리프로필렌 (PP)과 용융블렌드한 다음 온도변화에 따르는 인장성질의 변화와 인장시험에 의해 얻어진 파단면의 미세구조형태를 살펴보았다. PP/EPM 블렌드의 항복응력과 영률은 온도상승에 따라 감소하였고 항복변형률과 파단신장률은 온도상승에 따라 증가하였다. 이러한 온도의 상승은 결정영역의 열적 활성화에 따른 변형에 영향을 미쳐 전단항복과 크레이징을 유발하였으며, 이는 강인성 (toughness)의 증가를 가져오는 원인이 되었다. 이러한 전단항복과 크레이즈의 발생은 주사전자현미경 (scanning electron microscopy)에 의한 인장시험 파단면의 형태관찰로 확인되었으며, EPM의 함량증가 또한 PP매트릭스의 전단항복과 이에 따른 배향강화현상을 가져옴이 확인되었다.

Keywords: PP/EPM blends; tensile properties; microstructure; shear yielding; crazing

References
  • 1. Jancar J, DiAnselmo A, DiBenedetto AT, Kucera J, Polymer, 34, 1684 (1993)
  •  
  • 2. D'Orazio L, Mancarella C, Martuscelli E, Polato F, Polymer, 32, 1186 (1991)
  •  
  • 3. Martuscelli E, Silvestre C, Bianchi L, Polymer, 24, 1453 (1983)
  •  
  • 4. Onogi S, Asada T, Tanaka A, J. Polym. Sci. A: Polym. Chem., 7, 171 (1969)
  •  
  • 5. Kryszewski M, Galeski A, Pakula T, Grebowicz J, Milezarek P, J. Appl. Polym. Sci., 15, 1139 (1971)
  •  
  • 6. Karger-Kocsis J, Kallo A, Kuleznev VN, Acta Polym., 32, 578 (1981)
  •  
  • 7. Kojima M, J. Macromol. Sci.-Phys., B19, 523 (1981)
  •  
  • 8. Bucknall CBToughened Plastics, Applied Science Publishers, London (1977)
  •  
  • 9. Bucknall CB, Adv. Polym. Sci., 27, 121 (1978)
  •  
  • 10. Wu S, J. Polym. Sci. B: Polym. Phys., 21, 699 (1983)
  •  
  • 11. Schultz JM, Polym. Eng. Sci., 24, 770 (1984)
  •  
  • 12. Jang BZ, Uhlmann DR, vanderSande JB, J. Appl. Polym. Sci., 29, 3409 (1984)
  •  
  • 13. Bowden PB, Young RJ, J. Mater. Sci., 9, 2034 (1974)
  •  
  • 14. Young RJDevelopment in Polymer Fracture, Applied Science Publishers, London (1979)
  •  
  • 15. Dansei S, Porter R, Polymer, 19, 448 (1978)
  •  
  • 16. Han CD, Kinn JW, Chen G, J. Appl. Polym. Sci., 19, 2831 (1975)
  •  
  • 17. Lee BL, White J, Trans. Soc. Rheol., 19, 481 (1975)
  •  
  • 18. Karger-Kocsis J, Kallo A, Szafner A, Bodor G, Polymer, 20, 37 (1979)
  •  
  • 19. Han CDMultiphase Flow in Polymer Processing, Academic Press, New York (1981)
  •  
  • 20. Gleiter H, Petermann J, J. Polym. Sci. C: Polym. Lett., 10, 877 (1972)
  •  
  • 21. Petermann J, Gleiter H, J. Polym. Sci. B: Polym. Phys., 10, 2333 (1972)
  •  
  • 22. Petermann J, Gleiter H, J. Polym. Sci. B: Polym. Phys., 11, 359 (1973)
  •  
  • 23. Teh JW, White JR, Andrews EH, Polymer, 20, 755 (1979)
  •  
  • 24. Kinloch AJ, Young RJFracture Behavior of Polymers, Elsevier Applied Science Publishers, London (1983)
  •  
  • 25. Vincent PIProc. Conf. Physical Basis of Yield and Fracture, Oxford, Inst., Physics, London (1966)
  •  
  • 26. Lee SH, Yoon JS, Oh WH, Kim IB, Polym.(Korea), 14(4), 434 (1990)
  •  
  • 27. 김상용, 장동호, 최영엽섬유물리학, 반도출판사, 서울 (1990)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1995; 19(3): 368-378

    Published online May 25, 1995