• Graft Copolymerization of Acrolein onto Kevlar-49 Fiber Surface
  • Kim EY, Kim HD
  • Kevlar-49 섬유표면에 대한 Acrolein의 그라프트 공중합에 관한 연구
  • 김은영, 김한도
Abstract
The graft copolymerization of acrolein onto Kevlar 49 fiber surface was carried out by using sodium methylsulfinylcarbanion in DMSO as an initiator through anionic polymerization under a variety of reaction conditions. The effects of reaction conditions on the grafting and on the tensile strength of the fiber have been investigated. The graft yield significantly increased with increasing NaH concentration, grafting time and monomer concentration. The graft yield varied from 2.0 to 43% with reaction conditions. The tensile strength loss of the fiber predominantly depended on NaH concentration. The tensile strength retained was over 92% when the concentration of NaH was below 0.04 mo1/L/0.5 g Kevlar fiber. On increasing the NaH concentration, the number of active sites increased, however, the number of grafted acrolein per active site decreased. In thermomechanical and dynamic mechanical analyses, the relaxation peak of grafted-Kevlar fiber/SAN composite film moved to higher temperatures, compared with the original-Kevlar fiber/SAN composite film.

Sodium methylsulfinylcarbanion을 Kevlar 49 섬유 표면의 PPTA와 반응시켜 음이온 중합법으로 acrolein을 Kevlar 49 섬유표면에 그라프트 공중합하였다. 반응 조건이 그라프트율 및 Kevlar섬유의 인장강도에 미치는 영향을 조사하였다. 그라프트율은 NaH 농도, 그라프트 시간 그리고 단량체의 농도에 따라 증가하였으며, 그라프트율은 반응 조건을 조절함으로써 2∼43%로 조절할 수 있었다. Kevlar 섬유의 인장강도의 손실은 NaH 농도가 0.04mo1/L/0.5g Kevlar 이하의 경우에는 약 8% 이하였다. NaH농도가 증가함에 따라 활성 좌석수는 증가가였으나 활성 좌석수당 그라프트된 acrolein의 수는 감소하였다. 열, 기계적 및 동적 점탄성 거동에서, relaxation 피이크가 original-Kevlar/SAN 복합재료 필름에 비하여 grafted-Kevlar/SAN 복합재료 필름의 피이크가 더 고온 쪽으로 이동하였다.

Keywords: sodium methylsulfinylcarbanion; acrolein; anionic; graft copolymerization; composite film

References
  • 1. Penn LS, Bystry FA, Marchionni HJ, Polym. Compos., 4(1), 26 (1983)
  •  
  • 2. Vaughan DJ, Polym. Eng. Sci., 18, 167 (1987)
  •  
  • 3. Mai YW, Castino F, J. Mater. Sci., 4, 505 (1985)
  •  
  • 4. Kendal K, J. Mater. Sci., 10, 1011 (1975)
  •  
  • 5. Konopasek I, Hearle JWS, J. Appl. Polym. Sci., 21, 2791 (1977)
  •  
  • 6. Davidovitz M, Mittelman A, Roman I, Marom G, J. Mater. Sci., 19, 377 (1984)
  •  
  • 7. Penn L, Larsen F, J. Appl. Polym. Sci., 23, 59 (1979)
  •  
  • 8. Allred RE, Hall NH, Polym. Eng. Sci., 19, 907 (1979)
  •  
  • 9. Dobb MG, Johnson DJ, Majeed A, Saville BP, Polymer, 20, 1284 (1979)
  •  
  • 10. Morgan RJ, Pruneda CO, Polymer, 28, 340 (1987)
  •  
  • 11. Wertheimer MR, Schreiber HP, J. Appl. Polym. Sci., 26, 2087 (1981)
  •  
  • 12. Allred RE, Merrill EW, Roylance DKMolecular Characterization of Composite Interfaces, H. Ishida(Ed.), pp. 333-376, Plenum Press, New York (1984)
  •  
  • 13. Wu Y, Tesoro GC, J. Appl. Polym. Sci., 31, 1041 (1986)
  •  
  • 14. Keller TS, hoffman AS, Ratner BD, McElroy BJPhysicochemical Aspects of Polymer Surfaces, K.L. Mittal (Ed.), Vol. 2, pp. 861-879, Plenum Press, New York (1983)
  •  
  • 15. Kashani HA, Barrie JA, George MH, J. Polym. Sci. A: Polym. Chem., 16, 533 (1978)
  •  
  • 16. Takayanagi M, Katayose T, J. Polym. Sci. A: Polym. Chem., 19, 1133 (1981)
  •  
  • 17. Takayanagi M, Katayose T, J. Polym. Sci. A: Polym. Chem., 21, 31 (1983)
  •  
  • 18. Schulz RCVinyl Polymerization, G.E. Ham(Ed.), Part I, pp. 403, Marcel Dekker, Inc., New York (1967)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1995; 19(6): 769-778

    Published online Nov 25, 1995