Article
  • Synthesis and Characterization of New Polyamides Containing 1,3-Bis(p-carboxyphenyl)-1,1,3,3-tetramethyldisiloxane
  • Lee SM, Kim KS, Park KT
  • 1,3-Bis(p-carboxyphenyl)-1,1,3,3,-tetramethyldisiloxane을 함유하는 새로운 폴리아미드의 합성과 성질
  • 이수민, 김기수, 박경택
Abstract
New aromatic polyamides having silicon moieties in the main chain were prepared by polycondensation reaction of silphenylene/siloxane-containing monomer with spiroacetal and other aromatic monomers. The silphenylene/siloxane-containing monomer type employed was 1,3-bis(p-chlorocarbonylphenyl)-1,1,3,3-tetramethyldisiloxane (DMCL). The structures of these polymers were determined by FT-IR, 1H-NMR and elemental analyses. Their thermal properties were characterized by DSC and TGA. The polymers had inherent viscosities in the range of 0.21∼0.69dL/g. These polymers were readily soluble in various polar solvents such as DMF, DMAc, DMSO and NMP. The melting transition (Tm), initial decomposition (IDT) and 10% weight loss temperatures (T10) of these polymers were detected over the temperature range of 196∼282℃, 352∼415℃ and 394∼464℃, respectively. The structures of PAS series as determined by WAXD indicated that they were found to be semicrystalline.

주사슬에 실리콘을 함유하는 새로운 방향족 폴리아미드를 실페닐렌/실록산기 함유 단량체와 스피로아세탈을 비롯한 다양한 방향족 단량체와의 축합중합으로 합성하였다. 이때 사용된 실페닐렌/실록산 함유 단량체 는 1,3-bis(p-chlorocarbonylphenyl)-1,1,3,3-tetramethyldisiloxane (DMCI)였다. 합성된 이들 중합체의 구조는 FT-IR, 1H-NMR 그리고 원소분석으로 하였으며 열적 성질은 DSC와 TG.A로 측정하였다. 합성된 중합체들의 용액점성도는 0.21∼0.69 dL/g였으며 DMF, DMAc, DMSO 그리고 NMP와 같은 극성 용매에 용해되는 성질을 가졌다. 중합체의 녹음 전이온:.(Tm), 초기분해온도(IDT) 그리고 10% 질량손실온도(T10)는 각각 196∼282℃, 352∼415℃ 그리고 394∼464℃였다. 고광각 X-ray 회절(WAXD) 실험 결과 PAS 시리즈 중합체는 반결정형의 구조를 소유하는 것으로 판명되었다.

Keywords: polyamide; silphenylene-siloxane polymer; silicon polymer

References
  • 1. Cassidy PE, J. Macromol. Sci.-Chem., A15(7), 1435 (1981)
  •  
  • 2. Seymour RB, Kirshenbaum GSHigh Performance Polymers: Their Origin and Development, Elsevier, New York (1986)
  •  
  • 3. Critchley JP, Knight GJ, Wright WWHeat-Resistant Polymers: Technologically Useful Materials, Plenum, New York (1984)
  •  
  • 4. Kaito A, Kyptani M, Nakayama K, Macromolecules, 24, 3244 (1991)
  •  
  • 5. Frosini A, Levita G, J. Polym. Sci. B: Polym. Phys., 15, 239 (1977)
  •  
  • 6. Bowen HJMTables of Interatomic Distances and Configurations in Molecules and Ions, Spec. Publ. 11, Chem. Soc., London (1958)
  •  
  • 7. Cottrell TLThe Strength of Chemical Bonds, 2nd Ed., Butterworths, London (1958)
  •  
  • 8. Pauling LThe Nature of Chemical Bond, 3rd Ed., p. 85, 189, Cornell Univ., Press, Ithaca, New York (1960)
  •  
  • 9. Collings WR, Chem. Eng. News, 23, 1616 (1945)
  •  
  • 10. Zeigler JM, Fearon FWGSilicon-Based Polymer Science: A Comprehensive Resource, P. 741-752, ACS, Washington D.C. (1990)
  •  
  • 11. Pearce E, Trans. Am. Soc. Art. Int. Org., 14, 220 (1968)
  •  
  • 12. Perrin DD, Armarego WLFPurification of Laboratory Chemicals, 3rd Ed., Pergamon Press, New York (1988)
  •  
  • 13. Ghatge ND, Mohite SS, Polyhedron., 6(3), 435 (1987)
  •  
  • 14. Kim KS, Lee SM, Ryu KC, Lee KS, Polym. Bull., 35(1-2), 57 (1995)
  •  
  • 15. Lee SM, Kim KS, Lee KS, Lee SK, Polym.(Korea), 13(10), 888 (1989)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1996; 20(1): 25-32

    Published online Jan 25, 1996