Article
  • Development of Thermoplastic Polyolefins for Bumper Cover : 1. Effect of Polypropylene Matrix
  • Choi CH, Yoo TW, Hong JH, Ro MH, Lim YS
  • 범퍼 커버용 열가소성 폴리올레핀 수지의 개발 : 1. 폴리프로필렌 매트릭스의 영향
  • 최치훈, 유태욱, 홍존희,노문환, 임양수
Abstract
The effect of viscosity and ethylene content of polypropylene (PP) block copolymer on morphology, rheology, and mechanical properties of PP/ethylene-propylene rubber (EPR) blends was studied. Melt blends were prepared in a twin-screw extruder varing EPR content up to 40 wt%. Scanning electron micrographs (SEM) of blends showed that the particle size was decreased with increasing the viscosity of PP The state of EPR dispersion in matrix PP having 12% ethylene was better than that having 6% ethylene. Melt index(MI), tensile strength, flexural modulus and heat distortion temperature were decreased with rubber content, however, elongation at break and impact strength at room temperature were drastically increased at 10∼20 wt% rubber addition. Complex viscosities of PP/EPR blends increased monotonically with EPR content. Cole-Cole plot showed a deviation from the semicircle in 70/30 and 60/40 blends.

폴리프로필렌 (PP)/에틸렌-프로필렌 고무 블렌드에서 형태학적, 유변학적, 기계적 물성에 미치는 PP블록공중합체의 점도 및 에틸렌함량 효과에 관하여 연구하였다. 고무함량을 40wt%까지 변화시키면서 이축압출기를 사용하여 용융블렌딩을 행하였다. 주사전자현미경 사진에서 입자크기는 PP의 점도가 증가할수록 감소하는 것을 관찰하였다. 에틸렌 함량이 12%인 PP를 매트릭스로 사용하면 6%인 PP를 사용하는 것보다 EPR의 분산상태가 좋았다. 융옹지수, 인장강도, 굴곡탄성율 및 열변형온도는 고무함량에 따라 감소하였으며, 신율 및 충격강도는 고무함량 10∼20wt% 범위에서 급격히 증가하였다. 복합점도는 고무함량에 따라 단조증가하였다. Cole-Cole plot에서 70/30 및 60/40 블렌드는 반원형태로부터 벗어남을 관찰하였다.

Keywords: polypropylene block copolymer; ethylene-propylene rubber; morphology; rheology

References
  • 1. Birley W, Haworth B, Batchelor JPhysics of Plastics: Processing, Properties and Materials Engineering, p. 369, Hanser, New York (1991)
  •  
  • 2. Mathew NM, Tinker AJ, J. Nat. Rubber Res., 1, 240 (1986)
  •  
  • 3. Dominggham DPlastics for Engineers, p. 105, Hanser, Munich (1993)
  •  
  • 4. Kim HG, An JH, Kim JH, Polym.(Korea), 19(6), 798 (1995)
  •  
  • 5. Hoppner D, Wendorff JH, Colloid Polym. Sci., 268, 500 (1990)
  •  
  • 6. Dao KC, Polymer, 25, 1527 (1984)
  •  
  • 7. Kalfoglou NK, Angew. Makromol. Chem., 129, 103 (1985)
  •  
  • 8. Maxwell JPlastics in the Automotive Industry, p. 106, Woodhead Publishing Ltd., Cambridge (1994)
  •  
  • 9. Automotive Plastics Report 94, Market Search Inc. (1994)
  •  
  • 10. Nishio T, Nomura T, Yokoi T, Iwal H, Kawamura NSAE 920525, 121 (1992)
  •  
  • 11. Nomura T, Nishio T, Sato H, Sano H, Kobunshi Ronbunshu, 50, 87 (1993)
  •  
  • 12. Wu S, Polym. Eng. Sci., 28, 796 (1988)
  •  
  • 13. Utraki LA, Dumoulin MM, Toma P, Polym. Eng. Sci., 26, 34 (1986)
  •  
  • 14. Utraki LATwo-Phase Polymer System, p. 171, Oxford University Press, New York (1991)
  •  
  • 15. Walters KRheometry: Industrial Application, p. 263, Research Studies Press, Chichester (1980)
  •  
  • 16. Schlund B, Utraki LA, Polym. Eng. Sci., 27, 359 (1987)
  •  
  • 17. Wisniewski C, Marin G, Monge P, Eur. Polym. J., 20, 691 (1984)
  •  
  • 18. White JLPolymer Compatibility and Incompatibility: Principles and Practices, ed. by K. Solc, p. 423, MMI Press, New York (1982)
  •  
  • 19. Chung HK, Han CD, J. Appl. Polym. Sci., 29, 2205 (1984)
  •  
  • 20. Shin GS, Kim BK, J. Appl. Polym. Sci., 48, 945 (1993)
  •  
  • 21. Lee MS, Chem SA, Polym. Eng. Sci., 33, 686 (1993)
  •  
  • 22. Kim JH, Keskkula H, Paul DR, J. Appl. Polym. Sci., 35, 1563 (1988)
  •  
  • 23. Wu S, Polymer, 26, 1855 (1985)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1996; 20(3): 489-496

    Published online May 25, 1996