Article
  • Effect of Compatibilization on the Crystallization Behavior and the Physical Properties of Polypropylene/Polyamide Blends
  • Kim JH, KIm HI, Song HY, Kim HC, Lee KY
  • 폴리프로필렌/폴리아미드 블렌드의 결정화 거동 및 물성에 대한 상용화의 영향
  • 김진현, 김형일, 송해영, 김현철, 이기윤
Abstract
Polypropylene/polyamide (PP/PA) blend systems have been prepared to study the influence of compatibilization on the crystallization behavior of the semi-crystalline polymer components and the morphology and properties of the blends. PP-g-MAH which was prepared by grafting maleic anhydride (MAH) on PP worked effectively as a compatibilizer. Since the crystallization of the dispersed PA was sensitively influenced by the compatibilization, it took place with greater supercooling down to the crystallization temperature region of the continuous PP phase. The improved impact strength, which resulted from the compatibilization, was observed for the compatibilized blends having the dispersed phase of less than 1 μm. Meanwhile, both the compatibilized and the non-compatibilized blends did not show any big difference in the flexural modulus.

폴리프로필렌/폴리아미드(PP/PA) 블렌드계에서 상용화 효과가 결정성 고분자 구성성분의 결정화거동과 모폴로지 및 물성 등에 미치는 영향에 대해 조사하였다. PP에 maleic anhydride (MAH)가 graft된 PP-g-MAH가 효과적인 상용화제로 작용하였다. PA가 분산상인 블렌드에서 PA의 결정화 거동은 상용화에 의해 민감하게 영향을 받아 원래의 온도 영역에서 결정화가 진행되지 않고 연속상 PP의 결정화 영역까지 과잉냉각된 후 진행되었다. 상용화에 의해 분산상의 입자크기가 1 μm 이하로 미세 분산된 상용화 블렌드에서는 비상용화 블렌드에 비해 충격강도가 향상되었다. 반면 굴곡탄성율의 경우는 상용화 및 비상용화 블렌드 모두 큰 차이를 보이지 않았다.

Keywords: compatibilization; blend; crystallization; supercooling; morphology

References
  • 1. Paul DR, Newman SPolymer Blends, Academic Press, New York (1978)
  •  
  • 2. Han CDMultiphase Flow in Polymer Processing, Academic Press, New York (1981)
  •  
  • 3. Utracki LAPolymer Alloys and Blends, Hanser, Munich (1989)
  •  
  • 4. Collyer AARubber Toughened Engineering Plastics, Chapman & Hall, London (1994)
  •  
  • 5. Bucknall CBToughened Plastics, Applied Science Publishers, London (1977)
  •  
  • 6. Kurauchi T, J. Mater. Sci., 19, 1669 (1984)
  •  
  • 7. Koo KK, Inoue T,Miyasaki K, Polym. Eng. Sci., 25, 741 (1985)
  •  
  • 8. Kim SC, Brown HR, J. Mater. Sci., 22, 2589 (1987)
  •  
  • 9. Dekkers ME, Heikens D, J. Mater. Sci. Lett., 3, 307 (1984)
  •  
  • 10. Xanthos M, Polym. Eng. Sci., 28, 1392 (1988)
  •  
  • 11. Folkes MJ, Hope PSPolymer Blends and Alloys, Chapman & Hall, London (1993)
  •  
  • 12. Ishida H, Macromol. Chem. Macromol. Symp., 50, 157 (1991)
  •  
  • 13. Aref-Azar A, Hay JN, Marsden BJ, Walker N, J. Polym. Sci. B: Polym. Phys., 18, 637 (1980)
  •  
  • 14. Baitoul M, Saint-Guirons H, Xans P, Monge P, Eur. Polym. J., 17, 1281 (1981)
  •  
  • 15. Ghijsels A, Groesbeek N, Yip CW, Polymer, 23, 1913 (1982)
  •  
  • 16. Frensch H, Jungnickel BJ, Colloid Polym. Sci., 267, 16 (1989)
  •  
  • 17. Ikkala OT, Holstimiettinen RM, Seppala J, J. Appl. Polym. Sci., 49, 1165 (1993)
  •  
  • 18. Kim HI, Ahn BH, Lee DH, Yoo YS, Polym.(Korea), 18(3), 316 (1994)
  •  
  • 19. Wu S, Polym. Eng. Sci., 27, 335 (1987)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1996; 20(5): 791-797

    Published online Sep 25, 1996