Article
  • A Colloidal Pathway to Hydrophilic-Hydrophobic Polymer Composites; Preparation of Composites and Studies on the Their Permselectivity to Organic Liquids
  • Park JS
  • 콜로이드방법을 이용한 친수성-친유성 복합막의 제조와 투과증발에 재한 응용연구
  • 박준서
Abstract
Hydrophilic-hydrophobic composites were synthesized starting from an oil-in-water (o/w) concentrated emulsion of a hydrophobic monomer dispersed in a continuous phase of hydrophilic monomer. The study on the effect of physico-chemical properties on the stability of the concentrated emulsion during polymerization process is investigated. A higher interfacial tension between hydrophobic momomer of dispersed phase and hydrophilic monomer of continuous phase is crucial for a greater stability of the emulsion with the film forming capability of the surfactant employed. The more stable emulsions can be obtained by employing the less polar hydrophobic monomer and the more polar hydrophilic monomer. Mechanically strong viscoelastic interfacial film of surfactants, achieved using blends of surfactants or mixtures of surfactants and long chained alcohols, increase the stability of emulsion. Composites of hydrophilic- hydrophobic polymers show permselectivity to organic solvents. Composite of polystyrene as a dispersed phase and polyacrylamide as a continuous phase shows higher permselectivity to toluene in the mixture of toluene-cyclohexane.

분상상인 친유성 단량체가 연속상인 친수성 단량체에 분산되어 있고 분산상의 부피분율이 0.74이상인 O/W 고농축에멀션을 적당한 조건에서 반응을 시켜서 친수성-친유성 고분자복합재료를 합성하였다. 분산상과 연속상사이의 계면장력에 관한 연구를 통하여 중합시 고농축에멀션의 안정성에 미치는 요인을 조사하였다. 친수성 액체와 친유성 액체사이 계면장력의 차이가 클수록 보다 안정된 고농축에멀션을 얻었다. 두 종류의 계면활성제들을 적절하게 혼합하거나 계면활성제와 긴 사슬을 갖은 알콜과의 혼합으로 기계적으로 강한 계면필름을 형성하여 에멀션의 안정성을 증대시킨다. 분산상인 폴리스티렌과 연속상으로 폴리아크릴아미드로 이루어진 친수성-친유성 복합고분자는 유기혼합물에 높은 선택성을 보였다. 투과증발실험을 한 결과 친수성-친유성 복합막은 톨루엔시클로헥산 혼합물에서 톨루엔에 대해 선택도는 4.8-8.1를 나타내었으며 혼합물의 온도가 낮거나 혼합물에서 톨루엔의 농도가 높을수록 증가하였다.

Keywords: concentrated emulsions; stability; permselectivity; hydrophilic-hydrophobic composites

References
  • 1. Newman PPolymer Blends, vol. I and vol. II, Academic Press, New York (1987)
  •  
  • 2. Gryte CC, Gregor HP, J. Polym. Sci. B: Polym. Phys., 14, 1839 (1976)
  •  
  • 3. Sperling LH, Friedman DW, J. Polym. Sci. A: Polym. Chem., 7, 425 (1969)
  •  
  • 4. Cabasso T, Jagur-Grodzinski J, Vofsi D, J. Appl. Polym. Sci., 18, 2117 (1974)
  •  
  • 5. Henderson JF, Swarc M, Makromol. Rev., 3(7), 425 (1968)
  •  
  • 6. Lissant KJ, Mayhan KJ, J. Colloid Interface Sci., 42, 301 (1973)
  •  
  • 7. Ruckenstein E, Ebert G, Platz G, J. Colloid Interface Sci., 133, 432 (1989)
  •  
  • 8. Smith ALTheory and Practice of Emulsion Technology, chap. 19, Academy Press, New York (1976)
  •  
  • 9. Vold RD, Mittal KL, J. Colloid Interface Sci., 38, 451 (1972)
  •  
  • 10. Adamson AWPhysical Chemistry of Surfaces, 4th Ed., Chap. 14, John Wiley & Sons, New York (1982)
  •  
  • 11. Rehfeld SJ, J. Colloid Interface Sci., 46, 448 (1974)
  •  
  • 12. Barrer RM, Barrier JA, Slater JJ, J. Polym. Sci., 27, 177 (1958)
  •  
  • 13. Huang RM, Lin VJC, J. Appl. Polym. Sci., 12, 2615 (1965)
  •  
  • 14. Fels M, Huang RYM, J. Macromol. Sci.-Phys., B5, 89 (1971)
  •  
  • 15. Gregor MP, Wetstone DM, J. Phys. Chem., 61, 141 (1957)
  •  
  • 16. Harkins WD, Brown FE, J. Am. Chem. Soc., 41, 499 (1919)
  •  
  • 17. Battaerd MAJ, Tregear TWGraft Copolymer, Interscience, New York (1967)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1996; 20(6): 979-988

    Published online Nov 25, 1996