Article
  • A Study on the Ester Interchange Reaction between Poly(ethylene terephthalate) and Poly(ethylene naphthalate)
  • Kim WS, Youk JH, Ha WS, Park SY, Park CR
  • 폴리에틸렌테레프탈레이트와 폴리에틸렌나프탈레이트간의 에스테르 교환반응에 대한 연구
  • 김우성, 육지호, 하완식, 박수영, 박종래
Abstract
The effect of two ester interchange reactions, end-attack and direct interchange, on the polydispersity index and the degree of randomness in the copolymer of poly(ethylene terephthalate) (PET)/poly(ethylene naphthalate) (PEN) was systematically investigated using both computer simulation and experimental methods. It is revealed from the computer simulation that the end-attack reaction leads the polydispersity index much rapidly to the equilibrium value at about 2 while direct interchange reaction brings the degree of randomness much effectively to the equilibrium value at about 1 It was experimentally confirmed from the ester interchange reaction in the pairs, i.e. PET/PEN, B-PET/PEN, PET/B-PEN, B-PET/B-PEN that end-attack reaction was much more dominant than the direct interchange reaction.

폴리에틸렌테레프탈네이트(PET)와 폴리에틸렌나프탈레이트(PEN)의 에스테르 교환반응에 의한 공중합체의 생성과정을 말단공격에 의한 교환반응과 직접 에스테르 교환반응의 두 반응기구로 나누어 컴퓨터 모사와 실험을 통하여 고찰하였다. 컴퓨터 모사 결과 분자량 분산도는 말단공격에 의한 반응만을 할 경우가 더 빨리 평형치 2에 도달하셔 랜덤화도는 직접 에스테르 교환반응만을 할 경우가 더 빨리 평형치 1에 도달하게 됨을 알았다. 실험적으로는 PET, 말단 히드록시기를 봉쇄한 PET (B-PET), PEN 그리고 말단 히드록시기를 통쇄한 PEN (B-PEN)의 조합을 이용한 에스테르 교환반응을 통하여 말단공격에 의한 반응이 분자간 직접 에스테르 교환반응보다 우세하다는 것을 확인하였다.

Keywords: poly(ethylene terephthalate) (PET); poly(ethylene naphthalate) (PEN); computer simulation; polydispersity index; degree of randomness; end-attack; direct interchange reaction

References
  • 1. Mark HF, Bikales NMEncyclopedia of Polymer Science and Technology, Suppl. vol. 1, p. 144, Wiley, New York (1976)
  •  
  • 2. Wang CS, Sun YM, J. Polym. Sci. A: Polym. Chem., 32(7), 1295 (1994)
  •  
  • 3. Wang CS, Sun YM, J. Polym. Sci. A: Polym. Chem., 32(7), 1305 (1994)
  •  
  • 4. Nakamae K, Nishino T, Toda K, Kanamoto T, Ito M, Polymer, 34, 3322 (1993)
  •  
  • 5. Buchner S, Wiswe D, Zachmann HG, Polymer, 30, 480 (1989)
  •  
  • 6. Chen D, Zachmann HG, Polymer, 32, 1612 (1991)
  •  
  • 7. Cakmak M, Wang YD, Simhambhatla M, Polym. Eng. Sci., 30, 721 (1990)
  •  
  • 8. Ito M, Honda K, Kanamoto T, J. Appl. Polym. Sci., 46, 1013 (1992)
  •  
  • 9. Kotliar AM, J. Polym. Sci. Macromol. Rev., 16, 367 (1981)
  •  
  • 10. Kimura M, Salee G, Porter RS, J. Appl. Polym. Sci., 29, 1635 (1984)
  •  
  • 11. Park LS, Do JH, Park NK, Polym.(Korea), 18(5), 686 (1994)
  •  
  • 12. Park SS, Im SS, Polym.(Korea), 18(5), 708 (1994)
  •  
  • 13. Cruz CS, Calleja FJB, Zachmann HG, Chen D, J. Mater. Sci., 27, 2161 (1992)
  •  
  • 14. Anon. Res. Disc., 680 (1987)
  •  
  • 15. Anon. Res. Disc., 807 (1988)
  •  
  • 16. Andresen E, Zachmann HG, Colloid Polym. Sci., 272, 1352 (1994)
  •  
  • 17. Flory PJ, J. Am. Chem. Soc., 58, 1877 (1936)
  •  
  • 18. Flory PJ, J. Am. Chem. Soc., 64, 2205 (1942)
  •  
  • 19. Devaux J, Godard P, Mercier JP, Touillaux R, Dereppe JM, J. Polym. Sci. B: Polym. Phys., 20, 1881 (1982)
  •  
  • 20. Devaux J, Godard P, Mercier JP, J. Polym. Sci. B: Polym. Phys., 20, 1895 (1982)
  •  
  • 21. Devaux J, Godard P, Mercier JP, J. Polym. Sci. A: Polym. Chem., 20, 1901 (1982)
  •  
  • 22. Montaudo S, Macromolecules, 26, 2451 (1993)
  •  
  • 23. Montaudo G, Montaudo MS, Scamporrino E, Vitalini D, Macromolecules, 25, 5099 (1992)
  •  
  • 24. Borman WFH, J. Appl. Polym. Sci., 22, 219 (1978)
  •  
  • 25. Phol HA, Anal. Chem., 26, 1614 (1954)
  •  
  • 26. Kotliar AM, J. Polym. Sci. A: Polym. Chem., 11, 1157 (1973)
  •  
  • 27. Yamadera R, Murano M, J. Polym. Sci. A: Polym. Chem., 5, 2259 (1967)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1997; 21(5): 794-802

    Published online Sep 25, 1997