Article
  • Synthesis and Characterization of PBS-PTMG Segmented Block Copolymer
  • Park YH, Cho CG
  • PBS-PTMG Segmented Block Copolymer의 합성 및 분석
  • 박영효, 조창기
Abstract
Polyester-polyether segmented block copolymers of poly(butylene succinate) (PBS) and poly(tetramethylene glycol) (PTMG, Mn = 2000) with various compositions were synthesized. Their thermal and mechanical properties were investigated. The melting point of PBS control was 115.2 ℃ and the melting point of the copolymer containing 70 wt% of PTMG was 83.0 ℃. Crystallinity of soft segment was 5∼21% and that of hard segment was 53∼67%. Breaking stress of PBS control was 37.3 MPa but decreased with increasing PTMG content. In the case of the copolymer containing 70 wt% of PTMG, breaking stress was 24.0 MPa. Contrary to the decreasing breaking stress, breaking strain increased from 100% for PBS control to 800% for the copolymer containing 70 wt% of PTMG. The shape recovery ratio of the copolymer containing 70 wt% PTMG was almost twice of that of the copolymer containing 40 wt% PTMG.

Poly(butylene succinate)(PBS)와 poly(tetramethylene glycol)(PTMG, Mn=2000)을 공중합하여 polyester-polyether segmented block copolymer를 합성하고 조성에 따른 열적 거동과 기계적 성질을 알아보았다. PBS 단일중합체의 융점은 115.2 ℃였으나 70 wt%의 PTMG가 공중합되면 융점이 83.0 ℃까지 내려감을 알 수 있었다. 시차주사열량계(DSC)로 측정된 ΔHf(heat of fusion)에서 구한 결정화도는 소프트세그먼트가 5∼21 %, 하드세그먼트가 53∼67 %정도의 값을 보였다. PBS 단일중합체의 절단강도는 37.3 MPa이었으나 PTMG가 첨가됨에 따라 점차 감소하여 PTMG함량이 70 wt%인 공중합물의 경우 24.0 MPa로 약 1/3정도가 감소하였다. 이에 비해 절단신도는 PBS 단일중합체가 100 %, 이 후 PTMG함량 증가에 따라 증가하여 PTMG함량이 70 wt%인 공중합물이 800 %로써 약 8배로 신도가 향상되었다. 일정 연신율로 연신시킨 후의 복원율에서는 PTMG 함량 40 wt% 공중합물에 비해 PTMG 함량이 70 wt%인 공중합물의 복원율이 약 2배 정도 증가하였다.

Keywords: Poly(butylene succinate); Poly(tetramethylene glycol); Polyester-polyether segmented block copolymer; Shape recovery

References
  • 1. Huang SJ, Edelman PGDegradable Polymers, p. 19, Chapman & Hall, London (1995)
  •  
  • 2. Kricheldorf HR, Macromolecules, 17, 2173 (1984)
  •  
  • 3. Albertsson AC, Ljungquist O, J. Macromol. Sci.-Chem., A23, 411 (1986)
  •  
  • 4. Xiong CD, Cheng LM, Xu RP, Deng XM, J. Appl. Polym. Sci., 55(6), 865 (1995)
  •  
  • 5. Youxin L, Kissel T, J. Control. Release, 27, 247 (1993)
  •  
  • 6. Kim DK, Shin YS, Im SS, Yoo YT, Huh JR, Polym.(Korea), 20(3), 431 (1996)
  •  
  • 7. Huang F, Wang X, Li S, J. Macromol. Sci.-Chem., A28(2), 175 (1991)
  •  
  • 8. Boussias CM, Peters RH, Still RH, J. Appl. Polym. Sci., 25, 869 (1980)
  •  
  • 9. Gilding DK, Reed AM, Polymer, 22, 499 (1981)
  •  
  • 10. Nagata M, Kiyotsukuri T, Minami S, Tsutsumi N, Sakai W, Polym. Int., 39, 83 (1996)
  •  
  • 11. Radder AM, Leenders H, van Blitterswijk CA, Biomaterials, 16, 507 (1995)
  •  
  • 12. Schollenberger CSPolyurethane Technology, p. 207, John Wiley & Sons, New York (1969)
  •  
  • 13. Annual Book of ASTM Standards, 08.01, 161 (1993)
  •  
  • 14. Annual Book of ASTM Standards, 08.03, 470 (1993)
  •  
  • 15. van Krevelen DWProperties of Polymers, 3rd ed., p. 247, Elsevier Science Publishers, New York (1990)
  •  
  • 16. Slonecki J, Polymer, 31, 1464 (1990)
  •  
  • 17. Song DK, Sung YK, J. Appl. Polym. Sci., 56(11), 1381 (1995)
  •  
  • 18. Van Krevelen DWProperties of Polymers, 3rd ed., p. 118, Elsevier Science Publishers, New York (1990)
  •  
  • 19. Brandrup J, Immergut EHPolymer Handbook, 3rd ed., VI/p.78, John Wiley & Sons, New York (1989)
  •  
  • 20. Albertsson AC, Ljungquist O, J. Macromol. Sci.-Chem., A24, 977 (1987)
  •  
  • 21. Annual Book of ASTM Standards, 09.01, 268 (1993)
  •  
  • 22. Bellinger MA, Sauer JA, Hara M, Macromolecules, 27(21), 6147 (1994)
  •  
  • 23. Jung DW, Chun BC, J. Korean Fiber Soc., 34, 718 (1997)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1998; 22(4): 559-569

    Published online Jul 25, 1998