Article
  • Adhesion Strength of Immiscible Amorphous Polymer Interfaces with Diblock Copolymer
  • Jeong YH, Kang DW, Kang HJ
  • 이중 블록 공중합체를 이용한 비상용성 고분자 접합면의 접착강도에 관한 연구
  • 정연호, 강두환, 강호종
Abstract
Adhesion strength in the immisicible polystyrene/poly(methyl methacrylate) (PS/PMMA) interfaces treated with PS-b-PMMA diblock copolymer was measured as a function of processing conditions by butt joint tests. Welding temperature is not an important factor to control the adhesion strength because Flory-Huggings interaction parameter for this system has low temperature dependency. It was verified that there is a critical pressure to promote adhesion strength. As diblocks were segregated to each side, the adhesion strength increased rapidly due to the formation entanglements of diblock copolymer with each bulk polymer. Some cohesive failure of PS on PMMA side was found by the fracture surface analysis of PS and PMMA

PS-b-PMMA 이중 블록 공중합체가 표면 처리된 비상용성 무정형 고분자계인 polystyrene/poly(methyl methacrylate) (PS.PMMA)계의 접착조건에 따른 접착강도의 변화를 butt joint실험을 통하여 살펴보았다. PS/PMMA계는 Flory-Huggins interaction parameter의 낮은 온도의존성으로 인하여 계면접착력에 대한 온도영향이 적음을 확인하였으며 압력을 올려도 접착강도가 증가하지 않는 임계압력이 존재함을 알 수 있다. Entanglement 분자량 이상의 분자량을 가진 이중 블록 공중합체의 첨가 시 공중합체의 양쪽 분자쇄들이 각각 시편의 동종 고분자와 엉킴 구조를 형성함으로 인해 접착강도가 증가하였고 이중 블록 공중합체의 분자량이 작을수록 분자쇄의 빠른 확산에 의하여 단시간이내에 높은 접착강도에 도달하였다. 접착계면의 파단 시 PS의 표면에서는 응집파괴현상이 일어남을 확인하였다.

Keywords: diblock copolymer; butt joint; adhesion strength; cohesive fracture

References
  • 1. Brown HR, Char K, Deline VR, Macromolecules, 26, 4155 (1993)
  •  
  • 2. Shull KR, Winey KI, Thomas EL, Kramer EJ, Macromolecules, 24, 2748 (1991)
  •  
  • 3. Creton C, Kramer EJ, Hadziioannou G, Macromolecules, 24, 1846 (1991)
  •  
  • 4. Koizumi S, Hasegawa H, Hashimoto T, Macromolecules, 23, 2955 (1990)
  •  
  • 5. Cho K, Brown HR, Miller DC, J. Polym. Sci. B: Polym. Phys., 28, 1699 (1990)
  •  
  • 6. Scott C, Macosko C, J. Polym. Sci. B: Polym. Phys., 32(2), 205 (1994)
  •  
  • 7. Lee YS, Char KH, Macromolecules, 27(9), 2603 (1994)
  •  
  • 8. Creton C, Kramer EJ, Macromolecules, 25, 3075 (1992)
  •  
  • 9. O'Connor KM, Wool RP, Bull. Am. Phys. Soc., 30, 389 (1985)
  •  
  • 10. Jud K, Kausch HH, Williams JG, J. Mater. Sci., 16, 204 (1981)
  •  
  • 11. Wool RP, O'Connor KM, J. Appl. Phys., 52, 5953 (1981)
  •  
  • 12. Wool RP, Rubber Chem. Technol., 57, 307 (1983)
  •  
  • 13. Wool RP, Yuan BL, McGarel OJ, Polym. Eng. Sci., 29, 1340 (1989)
  •  
  • 14. ASTM Glossary of ASTM Definition, 2nd Ed., Philadelphia, 1973 (1973)
  •  
  • 15. Jeong YH, Kang DW, Kang HJ, Polym.(Korea), 21(5), 755 (1997)
  •  
  • 16. Willett JL, Wool RP, Macromolecules, 26, 5366 (1993)
  •  
  • 17. Russell TP, Menelle A, Hamilton WA, Smith GS, Satija SK, Majkrzak CF, Macromolecules, 24, 5721 (1991)
  •  
  • 18. Foster KL, Wool RP, Macromolecules, 24, 1397 (1991)
  •  
  • 19. Robertson RE, J. Adhes., 4, 1 (1972)
  •  
  • 20. Ferry JDViscoelastic Properties of Polymers, 3rd ed., Wiley, New York, 1980 (1980)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1999; 23(1): 17-24

    Published online Jan 25, 1999