Article
  • Cure Kinetics of Cycloaliphatic/DGEBA Epoxy Blend System Initiated by Thermal Latent Catalyst
  • Kwak GH, Park SJ, Lee JR
  • 잠재성 양이온 개시제를 이용한 Cycloaliphatic/DGEBA 에폭시 블렌드계의 경화 동력학에 관한 연구
  • 곽근호, 박수진, 이재락
Abstract
For the cycloaliphatic epoxy(CAE0/DGEBA epoxy blends containing 1 mol% of benzylpyrazinium hexafluoroantimonate (BPH) as a thermal latent initiator, the effects of blend composition and cure temperature on the cure kinetics was investigated by isothermal and dynamic DSC measurements. The composition of CAE/DGEBA blend was varied within 100:0, 80:20, 60:40, 40:60, 20:80 and 0:100 (mol%). Dynamic DSC thermograms revealed that the weak peaks of CAE/DGEBA blend ocurred by the complex formation of the hydroxyl functional group and BPH and of the epoxide group and BPH were firstly shown in low temperature ranges. And the strong peaks considered as an exothermic reaction by the formation of three-dimensional network were consecutively shown in high temperature ranges. Isothermal DSC thermograms indicated that the cure reaction rate strongly depended on the cure temperature and the composition of CAE. The activation energies obtained from Kamal-Sourour equation were increased with the content of DGEBA, which could be resulted from the autocatalytic reaction accelerated by the hydroxyl group produced through the reaction between the epoxy and BPH. The cure kinetics were discussed in terms of the curing reaction orders, reaction constants and frequency factors determined determined from the Kamal-Sourour equation.

열 개시 능력을 지니고 있는

Keywords: SbF6- 음이온을 함유한 N-benzylpyrazinium hexafluoroantimonate (BPH)를 cycloaliphatic계 에폭시(CAE)/diglycidyl ether of bisphenol A(DGEBA)계 에폭시 혼합물에 1 mol% 첨가시킨 후 경화 온도 및 혼합 조성비가 경화 반응에 미치는 영향에 대해 연구하였다. CAE/DGEBA계 에폭시 혼합물의 조성 변화는 100 : 0, 80 : 20, 60 : 40, 40 : 60, 20 : 80 그리고 0 : 100(mol%)의 범위에서 살펴보았다. 경화 반응의 동적 열분석 결과 경화 반응 초기에는 에폭시 수지 내의 수산기와 BPH 그리고 에폭사이드와 BPH간의 complex formation 결과 저온쪽의 약한 피크를 나타내며 고온 쪽에는 3차원 가교 구조를 이루는 성장 과정에서의 발열 피크를 나타냄을 알 수 있었다. 경화 반응 기구의 등온 열분석 결과 경화 온도가 높아지고, CAE 함량이 증가할수록 경화 반응 속도가 빨라지는 것을 볼 수 있었다. Kamal-Sourour 식으로 구한 활성화 에너지는 DGEBA 함량이 증가할수록 높은 값을 나타냈는데, 이는 에폭시기와 BPH의 반응 과정에서 생성되는 수산기가 촉매로 작용해 반응을 촉진시키는 자촉매 반응에 기인하는 것으로 사료된다. Kamal-Sourour equation을 통해 반응차수, 반응상수 그리고 빈도 인자 등을 결정하였으며 이를 경화 동력학적으로 고찰하였다.

Keywords: cycloaliphatic epoxy; cationic thermal latent catalyst; activation energy; cure kinetics; N-benzylpyrazinium hexafluoroantimonate

References
  • 1. Bauer RSEpoxy Resin Chemistry, Advances in Chemistry Series, No. 114, American Chemical Society, Washington, DC, 1979 (1979)
  •  
  • 2. Lee H, Nevile KHandbook of Epoxy Resins, McGraw-Hill, , New York, 1967 (1967)
  •  
  • 3. Rosato SV, Dimattia DP, Rosato DVDesigning with Plastics and Composites, Nostrand Reinhold, New York, 1991 (1991)
  •  
  • 4. Crivello JV, Lam JHW, J. Polym. Sci. A: Polym. Chem., 18, 1021 (1980)
  •  
  • 5. Gu J, Narang SC, Pearce EL, J. Appl. Polym. Sci., 30, 2997 (1985)
  •  
  • 6. Clayton AMEpoxy Resin Chemistry & Technology, 2nd ed., Marcel Dekker, Inc., New York and Basel, 1988 (1988)
  •  
  • 7. Mertzel E, Koenig JL, Adv. Polym. Sci., 72, 75 (1985)
  •  
  • 8. Mones ET, Walkup CM, Happe JA, Morgan RJ, Proc. Natl. SAMPE Tech. Conf., 14, 89 (1982)
  •  
  • 9. Garroway AN, Ritchey WM, Moniz WB, Macromolecules, 15, 1051 (1982)
  •  
  • 10. Kim YC, Park SJ, Lee JR, Polym. J., 29, 759 (1997)
  •  
  • 11. Lee SMInternational Encyclopedia of Composites, vol. 2, VCH Publishers, Inc., New York, 1990 (1990)
  •  
  • 12. Winter HH, Polym. Eng. Sci., 27, 1698 (1987)
  •  
  • 13. Uno H, Takata T, Endo T, J. Polym. Sci. A: Polym. Chem., 27, 1675 (1989)
  •  
  • 14. Mark HF, Blkales NM, Overberger CG, Menges GEncyclopedia of Polymer Science and Engineering, 2nd Ed., p. 8, John Wiley & Sons, New York, 1986 (1986)
  •  
  • 15. Kwon H, Kim YC, Park SJ, Lee JR, Polym.(Korea), 22(2), 285 (1998)
  •  
  • 16. Odian JPrinciples of Polymerization, 2rd ed., John Wiley & Sons, New York, 1991 (1991)
  •  
  • 17. Abu-Abdoun II, Ali A, Eur. Polym. J., 28, 73 (1988)
  •  
  • 18. Matejka L, Chabanne P, Tighzert L, Pascault JP, J. Polym. Sci. A: Polym. Chem., 32(8), 1447 (1994)
  •  
  • 19. Waters DN, John LP, Anal. Chem., 60, 53 (1988)
  •  
  • 20. Salla JM, Ramis X, Polym. Eng. Sci., 36(6), 835 (1996)
  •  
  • 21. Liu YL, Hsiue GH, Chiu YS, Jeng RJ, J. Appl. Polym. Sci., 61(10), 1789 (1996)
  •  
  • 22. Opalicki M, Kenny JM, Nicolais L, J. Appl. Polym. Sci., 61(6), 1025 (1996)
  •  
  • 23. Lee SN, Chiu MT, Lin HS, Polym. Eng. Sci., 32, 1037 (1992)
  •  
  • 24. Sourour S, Kamal MR, Thermochim. Acta, 14, 41 (1976)
  •  
  • 25. Kamal MR, Sourour S, Ryan M, Soc. Plast. Eng. Tech. Paper, 19, 187 (1973)
  •  
  • 26. Eloundou JP, Feve M, Harran D, Pascault JP, Angew. Makromol. Chem., 230, 13 (1995)
  •  
  • 27. Wang X, Gillham JK, J. Appl. Polym. Sci., 43, 2267 (1991)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1999; 23(1): 42-55