• Synthesis of PCS-co-MPS Ceramic Precursor with Platinum Catalyst and Its Pyrolysis
  • Hwang TS, Lee JT, Woo HG
  • 백금촉매에 의한 PCS-co-MPS 세라믹 전구체의 합성과 열분해 특성
  • 황택성, 이존태, 우희권
Abstract
In order to increase the yield of the ceramic precursors, copolymers of polycarbosilane(PCS) and γ-methacryloxypropyltrimethoxy silane (γ-MPS) were synthesized by hydrosilylation with platinum catalyst. The structures of PCS-co-MPS ceramic precursors were investigated by using FT-IR and 1H-NMR spectrometers. The syntheses of ceramic precursors were confirmed by monitoring the change of the absorption bands appearing at 2100, 1720, 1640, 1170, 1130 cm-1 on the FT-IR spectra. The syntheses of eramic precursors were also confirmed by the presence of peaks at 4.1, 3.5, 1.8 ppm on the 1 H-NMR spectra. The conversion of PCS-co-MPS copolymers was around 87.5% and 18.2% higher than that of the pure PCS. After the heat-treatment at 1500 ℃, the crystalline peaks for β-Sic were observed at-60, -109, ppm on the29 Si-NMR spectra, and at 2θ=35°, 59° and 71° on the X-ray spectra, respectively. It showed the conversion of ceramic precursors to crystalline β-SiC.

백금촉매를 이요한 hydrosilylation 반응에 의해 높은 수율의 세라믹 전구체를 얻기 위해서 polycarbosilane-co-methacryloxypropyltrimethoxy silane (PCS-CO-MPS)을 합성하였다. 합성한 시료의 FT-IR 스펙트럼에서 2100, 1720, 1640, 1170, ⅰ130 cm-1 부근에서의 흡수 피크 변화와 ¹H-NMR의 4.1, 3.5, 1.8 ppm 부근에서 특성 피크를 확인해 시료의 합성을 확인하였다. 또한 1500 ℃까지 열분해시킨 후 29Si-NMR 분석결과 δ=-60, -109 ppm 부근에서 특성 피크와 X-ray회절 분석결과 2θ=34, 61, 78°에서 결정성 피크로 β-SiC의 전환을 확인하였고, PCS-co-MPS의 열분해 전환율은 87,5%로 PCS에 비해 18.2%가 증가함을 보였다.

Keywords: hydrosilylation; PCS-co-MPS-based; ceramic precursor; catalysis; silicon carbide

References
  • 1. Hasegawa Y, Okamura K, J. Mater. Sci. Lett., 4, 356 (1985)
  •  
  • 2. Yajima S, Hayashi J, Omori M, Chem. Lett., 931, 931 (1975)
  •  
  • 3. Yajima S, Okamura K, Hayashi J, Omori M, J. Am. Ceram. Soc., 59, 324 (1976)
  •  
  • 4. Hasegawa Y, Iimura M, Yjima S, J. Mater. Sci., 15, 720 (1980)
  •  
  • 5. Okave Y, Hejo J, Kato A, J. Less. Commun. Mater., 68, 29 (1979)
  •  
  • 6. Hirai T, Goto T, Ksji T, Yogyo Kyokai Shi, 91, 502 (1983)
  •  
  • 7. Hase T, Suzuki M, Yogyo Kyokai Shi, 68, 541 (1978)
  •  
  • 8. Hasegawa Y, Okamura K, J. Mater. Sci., 18, 3633 (1983)
  •  
  • 9. Yajima S, Hasegawa Y, Hayashi J, Imura M, J. Mater. Sci., 13, 2569 (1978)
  •  
  • 10. Hasegawa Y, Imura M, Yajima S, J. Mater. Sci., 15, 720 (1980)
  •  
  • 11. Hwang TS, Lim JH, Woo HG, Polym.(Korea), 22(2), 194 (1998)
  •  
  • 12. Hwang TS, Polym.(Korea), 22(5), 708 (1998)
  •  
  • 13. Bacque E, Pillat JP, Birot M, Dunogues J, Macromolecules, 21, 34 (1988)
  •  
  • 14. Ganicz T, Stanczyk W, Bialeckaflorjanczyk E, Sledzinska I, Polymer, 37(18), 4167 (1996)
  •  
  • 15. Fritz G, Grobe J, Kummer D, Adv. Inorg. Chem. Radiochem., 7, 349 (1965)
  •  
  • 16. Bouillon E, Langlais F, Pailler R, Naslain R, Cruege F, Huong PV, J. Mater. Sci., 26, 1333 (1991)
  •  
  • 17. Martin HP, Muller E, Richter R, Roewer G, Brendler E, J. Mater. Sci., 32(5), 1381 (1997)
  •  
  • 18. Narisawa M, Shimoda M, Okamura K, Sugimoto M, Seguchi T, Bull. Chem. Soc. Jpn., 68(4), 1098 (1995)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1999; 23(2): 197-203

    Published online Mar 25, 1999