Article
  • Effects of Processing Conditions of Injection Molding on the Microstructure of Long Fiber Reinforced Nylon Composites
  • Park JH, Kim WN, Kwon IH, Lim S, Ko MB, Choe CR
  • 장섬유 보강 나일론 복합재료의 사출성형시 공정조건이 미세구조에 미치는 영향
  • 박정훈, 김우년, 권익환, 임순호, 고문배, 최철림
Abstract
Long fiber reinforced nylon6 pellets (Verton, PF-700-10HI) were injection molded and the influence of the mold gate thickness was investigated. Microstructure of injection-molded long fiber reinforced thermoplastics(LFRTP) could be roughly subdivided into one core region and two skin regions. We established the criterion for division of th regions, which was 54.7 ℃ of orientation angle (θ). The fiber length and the fiber orientation in injection molded specimens were measured in order to investigate the influence by the processing creasing the holding pressure, the mechanical properties of the specimens were improved by the enhanced fiber orientation. An increase in holding pressure led to denser packing and increased the skin region. Also, a higher injection speed led to fiber breakage and decreased the skin region. The mechanical properties of injection molded specimens could be improved by increasing the holding pressure and decreasing the injection speed.

본 실험에서는 LNP사에서 제조한 장섬유 보강 나일론6 펠렛(Verton : PF-700-10HI)을 재료로 사출성형을 통해 복합재료를 제조하였다. 금형의 게이트에 따른 영향을 비교하기 위해, 작은 게이트 두께를 가진 금형과 큰 게이트 두께를 가진 금형이 사용되었다. 장섬유 보강 복합재료의 미세구조는 크게 코아 영역과 스킨 영역으로 나뉘어지는데 본 연구에서는 구분 기준으로 배향각 54.7도를 선택하여 임의성을 최소화하였다. 시편 내부의 섬유 길이와 배향은 보압이나 사출속도와 같은 공정조건에 영향을 받게 되며, 장섬유 보강 사출 성형시 보압이 증가함에 따라 섬유의 길이가 짧아지는 경향을 볼 수 있는데. 이러한 섬유파손에도 불구하고 보합에 따른 섬유의 배향성이 좋아져 기계

Keywords: long fiber reinforced thermoplastics; injection molding; fiber orientation; holding pressure; injection speed

References
  • 1. Carlsson LAThermoplastic Composites Materials, Elsevier, NY (1991)
  •  
  • 2. Vaxman A, Narkis M, Polym. Compos., 10, 449 (1989)
  •  
  • 3. Folkes MJShort Fiber Reinforced Thermoplastics, Research Studies Press, Letchworth (1982)
  •  
  • 4. Lee SMInternational Encyclopedia of Composites, vol. 3, VCH Publishers, NY (1990)
  •  
  • 5. Crowson RJ, Folkes MJ, Bright PF, Polym. Eng. Sci., 20, 925 (1980)
  •  
  • 6. Folkes MJ, Russell DAM, Polymer, 21, 1252 (1980)
  •  
  • 7. Bright PF, Crowson RJ, J. Mater. Sci., 13, 2497 (1978)
  •  
  • 8. Hsiung CM, Zhang S, Bank D, SPE ANTEC Prepr., 2339 (1997)
  •  
  • 9. Agarwal BDAnalysis and Performance of Fiber Composites, John Wiley & Sons, NY (1990)
  •  
  • 10. Hollin J, Miller D, Vautour D, SPE ANTEC Prepr., 1660 (1995)
  •  
  • 11. Mark HF, Bikales NM, Overberger CG, Menges GEncyclopedia of Polymer Science and Engineering, vol. 10, John Wiley & Sons, Singapore (1987)
  •  
  • 12. Jansen KMB, Pantani R, Titomanlio G, Polym. Eng. Sci., 38(2), 254 (1998)
  •  
  • 13. Mamat A, Trochu F, Sanschagrin B, Polym. Eng. Sci., 35(19), 1511 (1995)
  •  
  • 14. Jansen KMB, Van Dijk DJ, Husselman MH, Polym. Eng. Sci., 38(5), 838 (1998)
  •  
  • 15. Jansen KMB, Van Dijk DJ, Husselman MH, Polym. Eng. Sci., 38(5), 838 (1998)
  •  
  • 16. Plati E, Williams JG, Polym. Eng. Sci., 15, 470 (1975)
  •  
  • 17. Barbosa SE, Kenny JM, SPE ANTEC Prepr., 1855 (1997)
  •  
  • 18. Nichhols RJ, Steller MAPlastics Compounding, 14, July/August (1986)
  •  
  • 19. Nielsen LE, Landel RFMechanical Properties of Polymer and Composites, Macel Dekker, Inc., NY (1994)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1999; 23(5): 681-689

    Published online Sep 25, 1999