Article
  • Nanocomposites from Epoxy Resin and Layered Minerals
  • Kang JH, Lyu SG, Sur GS
  • 에폭시 수지와 층상광물로부터 나노복합재료의 합성
  • 강재현, 유성구, 서길수
Abstract
A new type of filler for epoxy-clay nanocomposites has been prepared by the reaction of octadecyltrimethylammonium bromide and layered sodium montmorillonite(MMT) via and ion-exchange reaction. The gally space was further modified by grafting the aminopropyl groups via a reaction between a octadecyltrimethylammonium-MMT and 3-aminopropyltriethoxysilane(APS). The interlayer modification of MMT was confirmed by XRD, IR, and solid-state 29Si CP/MAS NMR. Furthermore, clay-polymer nanocomposites have been synthesized by the polymerization of diglycidyl ether of bisphenol A(DGEBA) and C18H37N(CH3)3-APS-MMT. The resulting hybrid nanocomposites were characterized by XRD, transmission electron microscopy(TEM) and scanning electron microscopy(SEM). The results proved that the organomontmorillonite could be exfoliated and uniformly dispersed in the epoxy matrix.

본 연구에서는 새로운 형태의 에폭시-고아물 나노복합재료를 합성하기 위한 충전재를 층상 화합물인 나트륨-montmorillonite(Na-MMT)와 bromide와의 이온교환 반응으로부터 얻었다. 이렇게 합성된 octadecyltrimethylammonium-MMT에 3-aminopropyl triethoxysilane(APS)를 반응시켜 층상물질의 내부에 aminopropyl기가 삽입된 C18H37N(CH3)3-APS-MMT를 합성하였다. 개질된 MMT의 층간거리와 구조를 X-선 회절(XRD), IR 그리고 고상 29Si CP/MAS NMR을 이용하여 확인하였다. 이어서 C18H37N(CH3)3-APS-MMT존재하에 diglycidyl ether of bisphenol A (DGEBA)를 중합시켜 광물-고분자 나노복합재료를 합성하였다. 그리고 얻어진 나노복합재료의 구조를 XRD, 투과전자현미경(TEM) 그리고 주사전자현미경(SEM)으로 확인하였다. 확인 결과 합성된 유기몬모릴로나이트는 에폭시 고분자 내에서 실리케이트층이 완전히 박리되어 있으며 단일층으로 고분자 매트릭스 내에 잘 분산되어 있음을 알았다.

References
  • 1. Choi HK, Park YH, Lyu SG, Kim BS, Sur GS, Polym.(Korea), 23(3), 456 (1999)
  •  
  • 2. Lyu SG, Bae KS, Sur GS, J. Korean Ind. Eng. Chem., 11(1), 29 (2000)
  •  
  • 3. Kawasumi M, Hasegawa N, Kato M, Usuki A, Okada A, Macromolecules, 30(20), 6333 (1997)
  •  
  • 4. Sur GS, Ryu JG, Lyu SG, Choi HK, Kim BS, J. Korean Ind. Eng. Chem., 10(4), 615 (1999)
  •  
  • 5. Ryu JG, Park GR, Lyu SG, Rhew JH, Sur GS, Polym.(Korea), 22(2), 328 (1998)
  •  
  • 6. Mathias LJ, Davis RD, Jarrett WL, Macromolecules, 32(23), 7958 (1999)
  •  
  • 7. Biswas M, Ray SS, Polymer, 39(25), 6423 (1998)
  •  
  • 8. Choi HK, Ryu JG, Lyu SG, Kim BS, Sur GS, J. Korean Ind. Eng. Chem., 10(6), 960 (1999)
  •  
  • 9. Ke YC, Long CF, Qi ZN, J. Appl. Polym. Sci., 71(7), 1139 (1999)
  •  
  • 10. Lee CU, Bae KS, Choi HK, Lee JH, Sur GS, Polym.(Korea), 24(2), 228 (2000)
  •  
  • 11. Pradas MM, Schaber G, Ribelles JL, Colomer FR, Macromolecules, 30(12), 3612 (1997)
  •  
  • 12. Wang Z, Pinnavaia TJ, Chem. Mater., 10, 3796 (1998)
  •  
  • 13. Sikka M, Cerini LN, Ghosh SS, Winey KI, J. Polym. Sci. B-Polym. Phys., 34(8), 1443 (1996)
  •  
  • 14. Endo K, Sugahara Y, Kuroda K, Bull. Chem. Soc. Jpn., 67, 3352 (1994)
  •  
  • 15. Ogawa M, Okutomo S, Kuroda K, J. Am. Chem. Soc., 120(29), 7361 (1998)
  •  
  • 16. Zhang CX, Babonneau F, Bonhomme C, Laine RM, Soles CL, Hristov HA, Yee AF, J. Am. Chem. Soc., 120(33), 8380 (1998)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2000; 24(4): 571-577

    Published online Jul 25, 2000