Article
  • A Study on the Preparation of UPE Resins with Different Glycol Molar Ratios and Their Physical Properties: 3. Estimation of Viscoelastic and Critical Surface Tension of UPE Liquid Resins
  • Lee SH, An SK, Lee JO
  • 글리콜 몰비가 다른 불포화 폴리에스테르 수지의 제조 및 물성에 관한 연구: 3. UPE 액상 수지의 임계표면장력 및 점탄성 평가
  • 이상효, 안승국, 이장우
Abstract
In this study, various unsaturated polyester(UPE) resins were prepared form the condensation polymerization of mixtures of saturated(isophthalic acid : IPA) and unsaturated(maleic anhydride : MA) dibasic acids with propylene glycol(PG), neopentyl glycol(NPG). The critical surface tension(γc) for the surface characteristics of a solid were estimated by Zisman plot, and the structure-property relationship was investigated by measuring the rheology of resins. The values of γc for glass of solid were 30.5 mN·m-1 for UPE resin liquids. As the content of NPG in a PG/NPG glycol mixture increased, both the contact angle and the surface tension of the UPE resin liquids were found to decrease. The dynamic viscoelasticities of UPW resins with different glycol molar ratios were also measured. Shear rate dependence of viscosity and angular frenquency dependence of storage, and loss modulus rended to decrease with increasing NPG content.

불포화 폴리에스테르(unsaturated polyester: UPE)수지를 다가알콜 (propylene glycol:PG, neopentyl glycol:NPG)의 각 몰비를 조정하여 포화 이염기산(isophthalic acid:IPA)과 불포화 이염기산(maleic anhydride:MA)의 혼합물로 축합반응으로 제조하였다. 고체의 표면특성을 결정짓는 임계표면장력(Υc)을 zisman plot으로 평가하였고, 또한 수지의구조와 물성과의 관계를 레올로지 측정으로 조사하였다. 고체 glass에 의한 Υc은 UPE 수지 액체들에 대해서 30.5 mN·m-1를 얻었고, PG/NPG 몰비중 NPG 함량이 증가할수록 UPE 수지 용액의 접촉각과 표면장력이 감소됨을 확인할 수 있었다. 그리고 글리콜 몰비가 다른 UPE 수지의 동적 점탄성을 측정하면 정상류 점도의 전단속도 의존성, 동적 탄성율의 각 주파수 의존성에 의해 순수한 PG보다는 NPG의 함량이 증가할수록 낮은 값을 얻을 수 있었다.

Keywords: contact angle; Zisman plot; critical surface tension; viscoelasticity

References
  • 1. Bikerman JJThe Science of Adhesive Joint, Academic Press, 1968 (1968)
  •  
  • 2. Poppe W, J. Adhes., 2, 114 (1970)
  •  
  • 3. Bartell FE, Shepard JW, J. Phys. Chem., 57, 455 (1953)
  •  
  • 4. Bikerman JJ, J. Phys. Colloid. Chem., 54, 653 (1950)
  •  
  • 5. Griffith AA, Trans. Roy. Sco., A221, 163 (1920)
  •  
  • 6. Zisman WA, J. Paint Technol., 44(564), 41 (1972)
  •  
  • 7. Finch JA, Smith GWContact Anglee and Wetting, p. 317, Dekker, New York, 1981 (1981)
  •  
  • 8. Zisman WA, Adv. Chem., 43, 1 (1964)
  •  
  • 9. Zisman WA, IEC, 55(10), 19 (1963)
  •  
  • 10. Zisman WA, End. Eng. Chem., 55(10), 18 (1963)
  •  
  • 11. Zisman WAConstitutional Effect on Adhesive and Adhesive, p. 176, Elsevier, 1962 (1962)
  •  
  • 12. Wu SPolymer Interface and Adhesion, p. 152, Dekker, New York, 1982 (1982)
  •  
  • 13. Alvey FB, J. Polym. Sci., 9, 2233 (1971)
  •  
  • 14. Mohr JG, Oleesky SS, Shook GD, Meyer LSSPI Handbook of Technology and Engineering of Reinforced Plastics/Composites, 2nd Ed., Van Nostrand Rheinhold, New York, 1973 (1973)
  •  
  • 15. Volgstadt RF, Polym. Eng. Sci., 14, 143 (1974)
  •  
  • 16. Kramer H, Konze IK, Trager IN, Marl Kunststoffe, 58, 913 (1968)
  •  
  • 17. Worthy W, Chem. Eng. Newsp. 6, March 16 (1987)
  •  
  • 18. Russel WB, J. Rheol., 24, 287 (1980)
  •  
  • 19. Russel WB, Savile DA, Showalter WRColloidal Dispersion, Cambridge, London, 1989 (1989)
  •  
  • 20. Amari T, Watanabe K, J. Rheol., 34, 207 (1990)
  •  
  • 21. Hayashi T, Morita K, Tateiri M, Amari T, Shikizai, 67, 80 (1994)
  •  
  • 22. Lee SH, Park TW, Lee JO, Polym.(Korea), 23(4), 493 (1999)
  •  
  • 23. Shaw DJIntroduction to Colloid and Surface Chemistry, Butterworth-Heinemann Ltd., London, 1992 (1992)
  •  
  • 24. Okubo T, Prog. Polym. Sci., 18, 481 (1993)
  •  
  • 25. Ackerson BJ, Hayter JB, Clark NA, Cotter L, J. Chem. Phys., 84, 2344 (1986)
  •  
  • 26. Chen LB, Zukoski CF, Phys. Rev. Lett., 65, 44 (1990)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2000; 24(5): 589-598

    Published online Sep 25, 2000