Article
  • A Study on the Preparation and Mechanical Properties of Composites Reinforced FRP Waste and Rock-Crush Sludge
  • Hwang TS, Park JW, Lee CH
  • 폐 FRP/석분슬러지 충전 복합재의 제조 및 기계적 물성에 관한 연구
  • 황택성, 박진원, 이철호
Abstract
In order to recyle the FRP waste from SMC bathtubs and rock-crush sludge obtained as a byproduct or stones, the composite consisting of the FRP and rock-crush sludge and the unsaturated polyester matrix resin were prepared. To enhance the interfacial bonding force between the reinforcements and the matrix resin, the rock-crush sludge was treated with silane coupling agent, γ-methacryloxypropyltrimethoxysilane(γ-MPS) and their mechanical properties and interface phenomena were examined. The flexural modulus of the composite containing 10 wt% rock-crush powder treated with 3 wt% silane coupling agent showed the maximum value. And also the initial thermal degradation temperature of composites were in the range of 352∼359 ℃. From these results, we observed that the weight loss of composites was almost constant regardless of the concentration of silane coupling agent. It is confirmed that the interface of the composites containing filler treated with γ-MPS was improved in that there were no pull-out phenomena between the reinforcement and matrix resin.

SMC 욕조 생산 시 발생하는 폐 FRP와 석재 가공공정에서 발생되는 석분슬러지를 재활용하기 위하여 불포화에스테르 매트릭스 수지에 분말 충전하여 복합재를 제조하였다. 또한 충전제와 매트릭스 간의 계면결합력을 향상시키기 위해 석분을 실란 커플링제 γ-methacryloxypropyltrimethoxysilane (γ-MPS)로 전처리하여 복합재를 제조하고 기계적 물성 및 계면현상을 관찰하였다. 복합재의 굴곡탄성은 석분함량이 10 wt%, 실란커플링제의 농도가 3 wt%일 때 가장 우수하였으며 석분 충전향이 증가함에 따라 감소하는 경향을 보였다. 또한 복합재의 초기 열분해온도는 352~359 ℃이었으며 이 온도에서 중량감소율은 약 3%로 충전제의 양에 관계없이 거의 일정한 경향을 보였다. γ-MPS 처리에 따른 복합재의 물성변화를 관찰한 결과 충전제와 매트릭스 수지간 계면결합력이 증진되어 물리·화학적으로 안정한 결합을 이루고 있고 pull out 현상이 발생하지 않음을 확인할 수 있었다.

Keywords: composite; FRP waste recycling; rock-crush sludge; interface; silane coupling agent

References
  • 1. Thayer ANC & E News, Jan. 30, 7 (1989)
  •  
  • 2. Mutch W, Plast. World, 45, 31 (1987)
  •  
  • 3. Nomaguchi K, Thermoset Resin, 16, 27 (1995)
  •  
  • 4. Iijima R, Makromol. Chem. Macromol. Symp., 57, 33 (1992)
  •  
  • 5. Leavesugh RD, Modern Plast., July(26), 40 (1991)
  •  
  • 6. Petterson J, Nilson P, J. Thermoplast. Composite Mat., 7, 56 (1994)
  •  
  • 7. Anon, Plast. Tech., Jan., 31 (1994)
  •  
  • 8. Graham WD, Jutte RB, Shipp DL, Composites, 3, 79 (1993)
  •  
  • 9. Allred RE, SAMPE J., 32, 46 (1996)
  •  
  • 10. Hwang TS, Shin KS, Lee JT, Yoon TH, Polym.(Korea), 23(3), 450 (1999)
  •  
  • 11. Hwang TS, Choi DM, Choi JR, Korea J. Mat. Res., 8, 13 (1998)
  •  
  • 12. ASTM D 790M-93
  •  
  • 13. ASTM D 638M-93
  •  
  • 14. Choe CR, Jang J, Polym.(Korea), 18(1), 86 (1994)
  •  
  • 15. Jang J, Kim S, Kim B, Polym.(Korea), 18(4), 576 (1994)
  •  
  • 16. Jang JS, Ishida H, Plueddemann EPProc. 41st Ann. Conf. Reinforced Plastics/Composites Inst. 21-F (1987)
  •  
  • 17. Nielsen and Dekker, Mechanical Polymer and Composites, 377 (1994)
  •  
  • 18. Ishida H, Miller JDSPI. 38th Ann. Conf., Reinf. Plas. Compos., 4-E (1983)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2000; 24(6): 829-836

    Published online Nov 25, 2000