Article
  • Interaction of Fibroblast Cells onto chloric Acid-treated Poly(α-hydroxy acid) Polymer Surfaces
  • Lee SJ, Khang G, Lee JH, Lee YM, Lee HB
  • 염소산 처리된 Poly(α-hydroxy acid)계 고분자 표면과 섬유아세포의 상호작용
  • 이상진, 강길선, 이진호, 이영무, 이해방
Abstract
PLA, PGA and PLGA films were treated with chloric acid mixture solution[70% perchloric acid(HClO4)/potassium chlorate(KClO3) aq. saturated solution, 3:2] to increase surface wettability and thus cell compatibility. The surface-treated PLA, PGA, and PLGA films were characterized by the measurement of water contact angle, electron spectroscopy for chemical analysis, and scanning electron microscopy. Surface wettability of chloric acid-treated PLA, PGA, and PLGA film surfaces was gradually increased with increase of treatment time. Unlike EtOH pre-treatment, chloric acid-treated polymer films maintain hydrophilic surface after drying. In cell adhesion test, fibroblasts were cultured on the chloric acid-treated film surfaces for 1 and 2 days. As the surface wettability increased, the cell adhesion on the surface were increased. In conclusion, this study demonstrated that the surface wettability of polymer plays an important role for cell adhesion and proliferation behavior.

본 연구에서는 폴리락타이드(PLA), 폴리글리콜라이드(PGA) 그리고 이들의 공중합체인 PLGA 필름을 염소산 혼합용액 [70% 과염소산(HClO4)/포타슘 클로레이트(KClO3) 포화수용액,3:2]으로 처리하여 표면의 젖음성과 세포적합성을 증가시켰다. 표면 처리된 고분자의 표면을 물접촉각 측정과 ESCA, SEM으로 특성결정하였다. 염소산 처리된 PLA,PGA 및 PLGA의 표면 젖음성은 처리시간이 증가함에 따라 증가되었고 이들 고분자 필름은 기존의 에탄올 전처리와 달리 건조 후에도 친수성 표면을 유지하였다. 세포 점착실험은 섬유아세포를 염소산 처리된 필름의 표면에서 1일 및 2일 배양하였고 표면의 젖음성이 증가함에 따라 세포의 점착도 우세하였다. 결론적으로 본 연구에서는 표면의 젖음성은 세포의 점착과 증식 거동에 중요한 역할을 한다는 것을 증명하였다.

Keywords: chloric acid mixture solution; surface wettability; cell compatibility; cell adhesion and proliferation behavior

References
  • 1. Langer R, Vacanti JP, Science, 260, 920 (1993)
  •  
  • 2. Khang G, Jo I, Lee JH, Lee I, Lee HB, Polym. Sci. Technol., 10(5), 640 (1999)
  •  
  • 3. Khang G, Lee HB, Bioindustry, 22, 32 (1999)
  •  
  • 4. Khang G, Lee HB, Chem. World, 37(3), 46 (1997)
  •  
  • 5. Khang G, Lee JH, Lee HB, Polym. Sci. Technol., 10(6), 732 (1999)
  •  
  • 6. Lee I, Khang G, Lee HB, Polym. Sci. Technol., 10(6), 782 (1999)
  •  
  • 7. L'Heureux N, Germain L, Auger LA, Science, 284(5420), 1621 (1999)
  •  
  • 8. Ferber D, Science, 284, 422 (1999)
  •  
  • 9. Peter SJ, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG, J. Biomed. Mater. Res., 43, 422 (1998)
  •  
  • 10. Peppas NA, Nature, 389(6650), 453 (1997)
  •  
  • 11. Yoo JJ, Lee IWTissue Engineering: Concepts and Application, Korea Med. Pub., Seoul, 1998 (1998)
  •  
  • 12. Thomson RC, Wake MC, Yaszemski MJ, Mikos AG, Adv. Polym. Sci., 122, 247 (1995)
  •  
  • 13. Freed LE, Marquis JC, Nohria A, Emmanual J, Mikos AG, Langer R, J. Biomed. Mater. Res., 27, 11 (1993)
  •  
  • 14. Mooney DJ, Sano K, Kaufmann PM, Majahod K, Schloo B, Vacanti JP, Langer R, J. Biomed. Mater. Res., 37, 413 (1993)
  •  
  • 15. Kim TH, Jannetta C, Vacanti JP, Upton J, Vacanti CA, Mater. Res. Soc. Symp. Proc., 394, 91 (1995)
  •  
  • 16. Yaszemski MJ, Payne RG, Hayes WC, Langer R, Aufdemorte TB, Mikos AG, Tissue Eng., 1(1), 41 (1995)
  •  
  • 17. Miyoshi H, Yanagi K, Fukuda H, Ohshima N, Biotechnol. Bioeng., 43(7), 635 (1994)
  •  
  • 18. Frazza EJ, Schmitt EE, J. Biomed. Mater. Res. Symp., 1, 43 (1971)
  •  
  • 19. Wu XSEncyclopedic Handbook of Biomaterlas and Bioengineering, vol. 1, p. 1015, Marcel Dekker, New York, 1995 (1995)
  •  
  • 20. Gao J, Niklason L, Langer R, J. Biomed. Mater. Res., 42, 417 (1998)
  •  
  • 21. Maauliagrawal C, Niederauer GG, Athanasiou KA, Tissue Eng., 1(3), 241 (1995)
  •  
  • 22. Ma PX, Langer R, Mat. Res. Soc. Symp. Proc., 394, 99 (1995)
  •  
  • 23. Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, Langer R, Biotechnology, 12, 689 (1994)
  •  
  • 24. Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R, J. Biomed. Mater. Res., 27, 183 (1993)
  •  
  • 25. Thomson RC, Yaszemski MJ, Powers JM, Mikos AG, J. Biomater. Sci.-Polym. Ed., 7(1), 23 (1995)
  •  
  • 26. Mooney DJ, Breuer C, McNamara K, Vacanti JP, Langer R, Tissue Eng., 1(2), 107 (1995)
  •  
  • 27. Harris LD, Kim BS, Mooney DJ, J. Biomed. Mater. Res., 42, 396 (1998)
  •  
  • 28. Vacanti CA, Langer R, Schloo B, Vacanti JP, Plast. Reconstr. Surg., 88, 753 (1991)
  •  
  • 29. Cima LG, Vacanti JP, Vacanti C, Ingber DE, Mooney DJ, Langer R, J. Biomech. Eng., 113, 143 (1991)
  •  
  • 30. Khang G, Jeon JH, Cho JC, Lee HB, Polym.(Korea), 23(3), 471 (1999)
  •  
  • 31. Lee JH, Lee SJ, Khang G, Lee HB, J. Biomater. Sci.-Polym. Ed., 10(3), 283 (1999)
  •  
  • 32. Khang G, Lee SJ, Lee JH, Lee HB, Korea Polym. J., 7(2), 102 (1999)
  •  
  • 33. Khang G, Lee SJ, Lee JH, Kim YS, Lee HB, Bio-Med. Mater. Eng., 9(3), 179 (1999)
  •  
  • 34. Mikos AG, Lyman MD, Freed LE, Langer R, Biomaterials, 15, 55 (1994)
  •  
  • 35. Khang G, Lee SJ, Jeon JH, Lee JH, Lee HB, Polym.(Korea), 24(6), 869 (2000)
  •  
  • 36. Khang G, Jeon JH, Cho JC, Rhee JM, Lee HB, Polym.(Korea), 23(6), 861 (1999)
  •  
  • 37. Cho JC, Khang G, Rhee JM, Kim YS, Lee JS, Lee HB, Korea Polym. J., 7(2), 79 (1999)
  •  
  • 38. Lee HB, Khang G, Cho JC, Rhee JM, Lee JS, Polym. Prepr., 40, 288 (1999)
  •  
  • 39. Lee JH, Khang G, Lee JW, Lee HB, J. Colloid Interface Sci., 205(2), 323 (1998)
  •  
  • 40. Iwasaki Y, Ishihara K, Nakabayashi N, Khang G, Jeon JH, Lee JW, Lee HB, J. Biomater. Sci.-Polym. Ed., 9, 801 (1998)
  •  
  • 41. Lee JH, Khang G, Lee JW, Lee HB, Makromol. Chem. Makromol. Symp., 118, 571 (1997)
  •  
  • 42. Lee JH, Lee JW, Khang G, Lee HB, Biomaterials, 18, 351 (1997)
  •  
  • 43. Lee JH, Kim DK, Khang G, Lee JS, Biomater. Res., 2(2), 8 (1998)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2000; 24(6): 877-885

    Published online Nov 25, 2000