Article
  • Thermoplastic Film Infusion Process for Long Fiber Reinforced Composites Using Rubber Expandable Tools
  • Kim DW, An YS, Lee YK, Kim SW, Nam JD
  • 고무 치공구와 필름 함침공정을 이용한 열가소성 장섬유 복합재료 성형공정 연구
  • 김동욱, 안영선, 이영관, 김성우, 남재도
Abstract
Thermoplastic film infusion process was investigated by using a rubber tool, which intrinsically contains a thermally-expandable characteristic and effectively compensates for the pressure loss caused by thermoplastic polymer infusion. Increasing temperature up to the melting temperature of matrix, the polymer melt subsequently infused into the dry fabric, but the pressure was successfully sustained by the rubber tool. Even with the decreased resin volume, the rubber tool produced sufficiently high elastic force for continuous resin infusion. Combining D''Arcy''s law with the compressibility of rubber tool and elastic fiber bed, a film infusion model was developed to predict the resin infusion rate and pressure change as a function of time. In addition, the film infusion process without the rubber tool was viewed and analyzed by a compression process of the elastic fiber bed and viscous resin melt. The compressibility of fiber bed was experimentally measured and the multiple-step resin infusion was well described by the developed model equations.

본 연구에서는 온도의 상승에 의하여 팽창하는 열팽창 기능을 가지고 있으면서 부피의 감소에 의하여 발생하는 압력의 손실을 상쇄시킬 수 있는 고무 치공구를 열가소성 고분자의 필름 함침공정에 적용하였다. 일반적인 압축성형공정에서는 온도의 상승에 의하여 수지가 용융되고 이에 수지가 함침됨에 따라 압력이 감소하지만, 고무 치공구를 사용한 경우에는 수지의 함침을 보상한 고무 치공구가 팽창하여 감소된 압력을 보상하기 때문에 급격한 압력의 강하를 억제할 수 있었다. 이렇게 수지의 함침에 따른 고무 치공구의 부피 팽창 그리고 이에 따른 수지 함침속도의 변화를 고려하여 고무 치공구를 이용한 필름 함침공정 모델을 제안하였다. 또한 고무 치공구를 사용하지 않는 일반적인 압축공정에 있어서 수지의 함침에 따른 섬유층 탄성력의 변화를 실험적으로 측정하여 단계적인 압축공정에 있어서 수지의 함침속도를 예측할 수 있는 모델을 제안하였다.

Keywords: thermoplastic composite; film infusion; rubber expandable tool; long fiber reinforced composite

References
  • 1. Kocsis JKPolypropylene: Structure, Blends and Composites, Chapman & Hall, London (1995)
  •  
  • 2. Jang BZAdvanced Polymer Composites: Principles and Applications, ASM International (1994)
  •  
  • 3. Filbert C, Proc. SPE Ann. Conf., 394 (1968)
  •  
  • 4. Price RVU.S. Patent, 3,742,106 (1973)
  •  
  • 5. Klein AJ, Advanced Composites, 2(3), 37 (1987)
  •  
  • 6. Van West BP, Pipes RB, Advani SG, Polym. Compos., 12, 417 (1991)
  •  
  • 7. Silverman EM, Polym. Compos., 8, 8 (1987)
  •  
  • 8. Bigg DM, Bradbury EJ, Polym. Eng. Sci., 32, 287 (1992)
  •  
  • 9. Atochem Product Brochure, Thermoplastic Polymers in Powders for Composites, 1984
  •  
  • 10. Thiede-Smet M, Liu M, Ho V34th Int'l. SAMPE Symp., 1223 (1989)
  •  
  • 11. Handermann AC20th Int'l. SAMPE Conf., 681 (1988)
  •  
  • 12. Clemans SR, Western ED, Handerman AC, Mater. Eng., 27 (1988)
  •  
  • 13. Silverman EM, Jones RJ, SAMPE J., 33 (1988)
  •  
  • 14. Hiscock DF, Bigg DM, Polym. Compos., 10, 145 (1989)
  •  
  • 15. Bigg DM, Preston JR, Polym. Compos., 10, 261 (1989)
  •  
  • 16. Letterman LEU.S. Patent, 4,622,091 (1986)
  •  
  • 17. Carlsson LA, Pipes RBExperimental Characterization of Advanced Composite Materials, Prentice Hall, New Jersey (1987)
  •  
  • 18. Peterson AL, Cull RA, McMahon DF36th Int'l. SAMPE Symp., 959 (1991)
  •  
  • 19. Erik S, Robert M, J. Adv. Mat., 26, 2 (1994)
  •  
  • 20. Cull RA, Jacobson L, MaMahon DF36th Int'l. SAMPE Symp., 944 (1991)
  •  
  • 21. Ku MK, Keum SW, Lee YK, Nam JD, Hah JM, Choi HS, Lee SH, Suh MH, HWAHAK KONGHAK, 36(4), 536 (1998)
  •  
  • 22. Coldicott RJ, Longdon T, Green S, Ives PJ34th Int'l. SAMPE Symp., 2206 (1989)
  •  
  • 23. Hogan PA14th SAMPE Tech. Conf., New York (1980)
  •  
  • 24. Lin HH, Ranganathan S, Advani SGConsolidation of Continuous-Fiber System, ed. by S.G. Advani, Elsevier Science (1994)
  •  
  • 25. Lee SY, Springer GS, J. Comp. Mater., 24, 1270 (1990)
  •  
  • 26. Calius EP, Lee SY, Springer GS, J. Comp. Mater., 24, 1299 (1990)
  •  
  • 27. D'Arcy HLes Fontaines Publiques de la Ville de Dijon, Dalmont, Paris, 306 (1856)
  •  
  • 28. Gutowski TG, Cai Z, Proc. Manufacturing International, 4, 13 (1988)
  •  
  • 29. Gutowski TG, Morigaki T, Cai Z, J. Comp. Mater., 21(7), 172 (1987)
  •  
  • 30. Gutowski TG, SAMPE Q., 16(4), 58 (1985)
  •  
  • 31. Gutowski TG, Cai Z, Bauer S, Boucher D, Kingery J, Wineman SJ, J. Comp. Mater., 21(7), 650 (1987)
  •  
  • 32. Lee WI, Springer GS, J. Comp. Mater., 33, 661 (1988)
  •  
  • 33. Alan NEngineering with Rubber, Oxford University Press, New York, 1992
  •  
  • 34. Brandup J, Immergut EHPolymer HandBook, 3rd ed., Wiley, New York (1989)
  •  
  • 35. Ku MK, Nam JD, Hah JM, Choi HS, Kim BS, Proc. Polym. Soc. Korea, 22(1), 210 (1997)
  •  
  • 36. Kim DWThermoplastic Composite Molding Process Using Thermally Expandable Rubber Tool and Film Stacking Method, Master Thesis, Sungkyunkwan University, 1999
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2001; 25(1): 122-132

    Published online Jan 25, 2001

  • Received on Jul 3, 2000