Article
  • Inverse Suspension Polymerization of Acrylamide
  • Lee KC, Song BK, Lee DJ
  • 아크릴아미드의 역상 현탁중합
  • 이기창, 송봉근, 이동주
Abstract
Inverse suspension polymerization of acrylamide (AM) in cyclohexane was carried out to study the effects of concentrations of sorbitan ester (Span) stabilizers and 2,2'-azobis (2-methyl propionamidine) dihydrochloride (AIBA) initiator, amount of monomer, shaking speed, and polymerization temperature on the particle size of the resulting poly (acrylamide) (PAM) beads and their molecular weights. It was found that the particle diameter. in general, decreased with increasing concentration of stabilizer, shaking speed, and water content in the aqueous phase, and with decreasing concentration of initiator and polymerization temperature. The average molecular weight of the resulting PAM beads was also found to increase with increasing concentrations of monomer and stabilizer, and also with decreasing concentration of initiator, polymerization temperature, and water content in the aqueous phase. In this study, PAM beads ranging 2 ~ 50 μm in diameter, with 8000000 ~ 12000000 in the weight average molecular weight were successfully prepared in almost 100% conversion.

Sorbitan ester(Span)와 2,2'-azobis(2-methyl propionamidine) dihydrochloride(AIBA)를 각각 입자안정제와 개시제로 사용하여 cyclohexane 분산매에서 acrylamide (AM)의 역상 현탁중합을 다양한 중합 조건하에서 수행하여 생성되는 poly(acrylamide)(PAM) 현탁입자의 입자경, 평균분자량, 수용화도 등을 조사하였다. 일반적으로 PAM 현탁입자경은 입자안정제의 농도, 진탕속도, 수용상 성분 중 물의 양이 증가함에 따라, 또는 개시제의 농도, 중합 온도가 감소함에 따라 감소하였다. PAM 현탁중합체의 평균분자량은 단량체의 농도, 입자안정제의 농도가 증가함에 따라, 또는 개시제의 농도, 중합 온도, 수용상 성분중 물의 농도가 감소함에 따라 증가하였다. 본 연구에서 얻어진 PAM 현탁입자는 구슬형의 약 2 ~ 50 μm 범위의 입자경과 약 800 ~ 1200만의 중량평균분자량을 나타내었다.

Keywords: acrylamide; inverse suspension polymerization; span stabilizer; shaking speed; average molecular weight

References
  • 1. Meltzer YLWater-Soluble Polymers: Recent Developments, Noyes Data Corp., Park Ridge, N.J. (1979)
  •  
  • 2. Dautzenberg H, Jaeger W, Kotz J, Philipp B, Seidel C, Stscherbina DPolyelectrolyte: Formation, Characterization, and Application, Hanser Pubishers, New York (1994)
  •  
  • 3. Trijasson P, Pith T, Lambla M, Makromol. Chem. Makromol. Symp., 35-36, 141 (1990)
  •  
  • 4. Candau FScientific Methods for the study of Polymer Colloids and Their Application, eds. by F. Candau and R.H. Ottewill, p. 73, Kluwer Academic Publishers, Boston (1988)
  •  
  • 5. Visioli DLFormation and Stabilization of Inverse Emulsion Polymers, Ph.D. Thesis, Lehigh University, Bethlehem, PA. U.S.A. (1984)
  •  
  • 6. Farber EEncyclopedia of Polymer Science and Technology, ed. by H.M. Mark, vol. 13, p.552, Interscience Publishers, New York (1964)
  •  
  • 7. Yuan HG, Kalfas G, Ray WH, Macromol. Chem. Phys., C31(2-3), 215 (1991)
  •  
  • 8. Chang BJ, Oh IS, Kim JI, Joo HJ, Polym.(Korea), 23(2), 204 (1999)
  •  
  • 9. Lee KY, Kim KS, Moon YU, Shin JS, J. Korean Ind. Eng. Chem., 6(6), 1181 (1995)
  •  
  • 10. Wang GJ, Li M, Chen XF, J. Appl. Polym. Sci., 65(4), 789 (1997)
  •  
  • 11. Askari F, Nafish S, Omidian H, Hashemi SA, J. Appl. Polym. Sci., 50, 1851 (1993)
  •  
  • 12. Snuparek J, Cermak V, J. Dispersion Sci. Technol., 18(2), 115 (1996)
  •  
  • 13. Kiatkamjornwong S, Siwarungson N, Nganbunsri A, J. Appl. Polym. Sci., 73(11), 2273 (1999)
  •  
  • 14. McCutcheon's Emulsifiers & Detergents, 1996 North American Edition, MC Publishing CO., U.S.A. (1996)
  •  
  • 15. Odian GPrinciples of Polymerzation, p. 198, John Wiley & Sons, Inc., New York (1991)
  •  
  • 16. Napper DHPolymeric Stabilization, in Advances in emulsion Polymerization and Latex Technology, Lehigh University, Bethlehem, PA, U.S.A. (1990)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2001; 25(4): 460-467

    Published online Jul 25, 2001

  • Received on Feb 14, 2001