Article
  • Time-Strain Non-Separability in Polymer Viscoelasticity and Its Thermodynamic Consequence
  • Kwon Y
  • 고분자 점탄성에서 Time-Strain Non-Separability와 그 열역학적 의미
  • 권영돈
Abstract
We investigate, in the viewpoint of mathematical stability, the validity of the time-strain separability hypothesis employed in polymer viscoelasticity on the basis of experimental results. There have been suggested two distinct stability criteria such as Hadamard related to quick response and dissipative stability conditions, and in the limit of high deformation rate we have proved that separable constitutive equations are either Hadamard or dissipative unstable. The fact that the separability is not valid in the short time region in stress relaxation experiments exactly coincides with the results of our analysis. Therefore, since the application of the separability hypothesis incurs thermodynamic inconsistency as well as mathematical instability, such application should be avoided in the formulation of constitutive equations. In addition, careful attention should be paid to the limit of its validity even in experiments. It is also proved that there is neither theoretical nor physical validity of using the damping function.

실험적 사실에 근거하여 고분자 유체의 점탄성 구성방정식에 빈번히 적용되어온 time-strain separability 가설의 타당성을 수학적 안정성 관점에서 분석한다. 안정성 조건으로는 방정식의 빠른 응답과 관련된 Hadamard 안정성과 소산 성질에 의하여 결정되는 소산 안정성이 있으며, asymptotic 분석을 이용한 결과 가설을 따르는 구성방정식은 Hadamard 또는 소산 불안정함이 증명되었다. 응력완화 실험에서 이미 관찰된 짧은 시간영역에서 time-strain separability의 가설이 적용되지 않는다는 사실은 본 결과와 일치한다. 따라서 separability를 구성방정식에 적용하는 것은 수학적 불안정뿐 아니라 열역학적 모순점을 나타내게 되며, 또한 실험에서도 그 타당성의 한계에 주의할 필요가 있다. 더욱이 damping 함수 역시 실제와는 무관한 가상적 값을 제공하므로 damping 함수의 사용은 긴 시간영역에서 응력완화 거동을 기술하기 위한 curve fitting 이상의 의미는 없다 하겠다.

Keywords: time-strain separability; Hadamard stability; dissipative stability; damping function

References
  • 1. Einaga Y, Osaki M, Kurata M, Kimura S, Tamura M, Polym. J., 2, 550 (1971)
  •  
  • 2. Kwon Y, Leonov AV, J. Non-Newton. Fluid Mech., 58(1), 25 (1995)
  •  
  • 3. Kwon Y, J. Non-Newton. Fluid Mech., 88(1), 89 (1999)
  •  
  • 4. Renardy M, Rat. Mech. Anal., 88, 83 (1985)
  •  
  • 5. Simhambhatla MThe Rheological Modeling of Simple Flows of Unfilled and Filled Polymers, Ph.D. thesis, Dept. of Polymer Engineering, University of Akron (1994)
  •  
  • 6. Kwon Y, Leonov AI, Rheol. Acta, 33(5), 398 (1994)
  •  
  • 7. Laun HM, Rheol. Acta, 17, 1 (1978)
  •  
  • 8. Wagner MH, Meissner J, Makromol. Chem., 181, 1533 (1980)
  •  
  • 9. Doi M, Edwards SFThe Theory of Polymer Dynamics, Oxford University Press, New York (1986)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2001; 25(4): 536-544

    Published online Jul 25, 2001

  • Received on Apr 23, 2001