Article
  • Molecular Interactions of Soaked Nonionic Dye in Ionomer Films
  • Lee SH, Lee WS, Lee SJ, Kim SS, Kim I, Song K, Landis FA, Moore RB
  • 아이오노머 필름에 흡수된 비이온계 염료의 분자간 상호작용에 관한 연구
  • 이상흠, 이원선, 이상준, 김성수, 김인선, 송기국, Landis FA, Moore RB
Abstract
Sodium and zinc salts of poly(ethylene-co-methacrylic acid) ionomers consist of three phases, i.e. ionic aggregates, amorphous, and crystalline phases. Dye molecules after soaked from the methanol solution are located near the amorphous phase of ionic aggregates within ionomer films. Depending on the location of the molecules in the ionomer film, they are under influence of dispersion forces(ethylene parts), polar forces(acid parts), and ionic dipole(ionic aggregates) interactions. The UV/Vis absorption peak of Nile Red under the dispersion force is found at near 500 nm, for the dye under the polar force effect 525 nm, and 550 and 610 nm for the dyes under Na(+) and Zn(2+) ionization effects, respectively. Since the divalent Zn(2+) ion has larger ionic dipole than the monovalent Na(+) ion, the larger red-shift of the absorption band due to the ionic dipole interaction is observed for Zn(2+) counter ion.

Sodium 또는 zinc로 중화된 poly(ethylene-co-methacrylic acid)의 아이오노머는 ethylene 사슬 부분들로만 이루어진 결정상, acid 그룹이 존재하는 amorphous 영역, 그리고 ionic aggregate의 세 가지 상으로 나누어진다. Soaking에 의하여 흡수된 nonionic dye 분자들은 결정상을 제외한 amorphous 부분이나 ionic aggregate 부근에 존재하는데, 주위 사슬의 극성에 따라 dispersion force (ethylene 사슬 부분), polar force (acid 부분), ionic dipole (ionic aggregate 부분)의 세 가지 다른 힘의 영향 아래 놓이게 된다. 극성이 적은 ethylene 사슬부분의 dispersion force 영향 아래에 존재하는 Nile Red의 UV/Vis 흡수피크는 500 nm 부근에서, polar 한 acid 그룹의 영향을 받는 dye 피크는 525 nm, 그리고 ionic aggregate의 영향에 의한 dye는 Na(+)-아이오노머의 경우 550 nm, divalent이어서 더 큰 ionic dipole을 가지는 Zn(2+)-아이오노머의 경우 610 nm에서 각각 피크가 나타났다.

Keywords: ionomer; surlyn; dichroic dye; nile red; intermolecular forces

References
  • 1. Rees RW, Vaughan DJ, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem., 6, 287 (1965)
  •  
  • 2. Eisenberg A, Farb H, Cool LG, J. Polym. Sci. A: Polym. Chem., 4, 855 (1966)
  •  
  • 3. Longworth R, Vaughan DJ, Nature, 218, 85 (1968)
  •  
  • 4. Kim JS, Jackman RJ, Eisenberg A, Macromolecules, 27(10), 2789 (1994)
  •  
  • 5. Eisenberg A, Hird B, Moore RB, Macromolecules, 23, 4098 (1990)
  •  
  • 6. Eisenberg AIons in Polymers, Advances in Chemistry Series 187, Am. Chem. Soc., Washington, DC (1980)
  •  
  • 7. Eisenberg A, Bailey FACS Symposium Series 302, Am. Chem. Soc., Washington, DC (1986)
  •  
  • 8. Olah GA, Laali K, Mehrotra AKJ, Org. Chem., 48, 3360 (1983)
  •  
  • 9. Drake EN, Polym. Prepr. Am. Chem. Soc. Polym. Chem., 35(2), 14 (1994)
  •  
  • 10. Vollmert B, Schoene W, Macromol. Chem., 19, 157 (1971)
  •  
  • 11. Phillips PJ, Chem. Rev., 90, 425 (1990)
  •  
  • 12. Dirix Y, Tervoort TA, Bastiaansen C, Macromolecules, 28(2), 486 (1995)
  •  
  • 13. Dirix Y, Tervoort TA, Bastiaansen C, Macromolecules, 30(7), 2175 (1997)
  •  
  • 14. Bastiaansen C, Schmidt HW, Nishino T, Smith P, Polymer, 34(18), 3951 (1993)
  •  
  • 15. Eisenberg A, Macromolecules, 3, 147 (1970)
  •  
  • 16. Tsujita Y, Shibayama K, Takizawa A, Kinoshita T, J. Appl. Polym. Sci., 33, 1307 (1987)
  •  
  • 17. Datta A, Mandal D, Pal SK, Bhattacharyya K, J. Phys. Chem. B, 101(49), 10221 (1997)
  •  
  • 18. Sarkar N, Das K, Nath DN, Bhattacharyya K, Langmuir, 10(1), 326 (1994)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2001; 25(5): 671-678

    Published online Sep 25, 2001

  • Received on May 21, 2001