Article
  • Bubble Nucleation in Polymer Solutions
  • Kang SL, Kim KY, Kwak HY
  • 고분자 용액에서의 기포 형성
  • 강성린, 김기영, 곽호영
Abstract
The molecular cluster model for the homogeneous bubble nucleation rather than the classical nucleation theory was extended to predict the bubble nucleation events in elastomers (cross-linked polymers), polymers and polymer which are dissolved in the organic solvent. The classical theory assumes the formation of the critical bubble while the molecular cluster model assumes the critical cluster as for the initiation of the bubble nucleation. For the bubble nucleation in elastomers and polymers, the strain energy overcome by a critical bubble was also considered. The calculation results for the number of bubbles nucleated in elastormers and polymer solutions, which are about 108 ~ 1012 bubbles/cm3 are in good agreement with observed ones.

탄성체(가교된 고분자) 가스가 용해된 고분자 또는 유기 용매에 용해된 고분자 용액에서 기포 생성을 예측하기 위하여 균일한 기포 생성은 고전적인 이론에서의 임계 기포의 생성이 아닌 임계 뭉치의 생성을 통하여 이루어진다는 분자 뭉치 이론을 적용하였다. 또한 탄성체나 고분자 내에서 기포가 생성하는 경우 임계 기포가 극복해야 할 탄성 에너지를 고려하였다. 대략 108 ~ 1012개에달하는 분자 뭉치 이론에 의해 계산된 단위 부피당 생성된 기포 수는 실험치와 잘 일치하였다.

Keywords: bubble nucleation; elastomer; molecular cluster model; polymer; strain energy

References
  • 1. Gent AN, Tompkins DA, J. Appl. Phys., 40, 2520 (1969)
  •  
  • 2. Stewart CW, J. Polym. Sci. A: Polym. Chem., 8, 937 (1970)
  •  
  • 3. Han JH, Han CD, J. Polym. Sci. B: Polym. Phys., 28, 711 (1990)
  •  
  • 4. Han CD, Yoo HJ, Polym. Eng. Sci., 21, 518 (1981)
  •  
  • 5. Colton JS, Suh NP, Polym. Eng. Sci., 27, 493 (1987)
  •  
  • 6. Goel SK, Beckman EJ, Polym. Eng. Sci., 34(14), 1137 (1994)
  •  
  • 7. Baldwin DF, Park CB, Suh NP, Polym. Eng. Sci., 36(10), 1425 (1996)
  •  
  • 8. Han JH, Han CD, J. Polym. Sci. B: Polym. Phys., 28, 743 (1990)
  •  
  • 9. Lee JG, Flumerfelt RW, J. Colloid Interface Sci., 184(2), 335 (1996)
  •  
  • 10. Briggs LJ, J. Appl. Phys., 21, 721 (1950)
  •  
  • 11. Hemmingsen EA, J. Appl. Phys., 46, 213 (1975)
  •  
  • 12. Kwak H, Lee S, J. Heat Transfer, 113, 714 (1991)
  •  
  • 13. Oxtoby DW, J. Phys.: Condens. Matter, 4, 7627 (1992)
  •  
  • 14. Kwak H, Panton RL, J. Chem. Phys., 78, 5795 (1983)
  •  
  • 15. Kwak H, Panton RL, J. Phys. D, 18, 647 (1985)
  •  
  • 16. Kwak HY, Kim YW, Int. J. Heat Mass Transf., 41(4-5), 757 (1998)
  •  
  • 17. Gent AN, Tompkins DA, J. Polym. Sci. A: Polym. Chem., 7, 1483 (1969)
  •  
  • 18. Kwak HY, Oh SD, J. Colloid Interface Sci., 198(1), 113 (1998)
  •  
  • 19. Rao CNR, Rao KJPhase Transitions in Solids, McGraw-Hill, Inc. (1978)
  •  
  • 20. Porter DA, Easterling KEPhase Transformations in Metals and Alloys, Van Nostrand Reinbold Co. New York (1981)
  •  
  • 21. VanStralen S, Cole RBoiling Phenomena, Vol. 1, Hemisphere Pub., Co. (1979)
  •  
  • 22. Frenkel JKinetic Theory of Liquids, Oxford University Press, London (1946)
  •  
  • 23. Faber TEIntroduction to the Theory of Liquid Metals, Cambridge University Press (1972)
  •  
  • 24. Blander M, Katz JL, AIChE J., 21, 833 (1975)
  •  
  • 25. Kwak HBubble Dynamics (In Korean), Dream Media, Seoul (2002)
  •  
  • 26. Kang SL, Kim KY, Kwak H, Polym. Eng. Sci.submitted for publication (2003)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2004; 28(1): 51-58

    Published online Jan 25, 2004

  • Received on Sep 4, 2003
  • Accepted on Jan 8, 2004