Article
  • Structure Development of Uniaxially Drawn Poly(trimethylene terephthalate)/Poly(ethylene terephthalate) Blends
  • Jeon BH, Kim W, Kang HJ
  • 일축 연신에 의한 폴리(트리메틸렌 테레프탈레이트)/폴리(에틸렌 테레프탈레이트) 블렌드의 구조 변화
  • 전병환, 김환기, 강호종
Abstract
The effects of drawing temperature and draw down ratio on thermal properties, crystallinity and orientation of poly(trimethylene terephthalate)/poly(ethylene terephthalate) (PTT/PET) 100/0, 90/10, and 80/20 blends have been investigated. The crystallinity and glass transition temperature increased while cold crystallization temperature and cold enthalpy decreased due to the development of orientation and stress induced crystallization by the cold rawing. Introducing PET to PTT decreased the crystallinity of PTT. However, it enhanced the orientation of PTT/PET blends drawn at below the glass transition temperature of PET. This lead to the increase of tensile modulus and tensile strength of PTT/PET blends. The shrinkage increased with increasing orientation, which might be minimized by the development of crystalline morphology of PTT in the course of cold drawing.

폴리(트리메틸렌 테레프탈레이트)/폴리(에틸렌 테레프탈레이트) (PTT/PET) 블렌드의 저온 연신 시, 연신 온도와 연신 비에 의한 PTT/PET 100/0, 90/10 및 80/20 블렌드의 열적 특성, 결정화도 및 배향 특성을 살펴보고 이에 따른 수축률과 기계적 특성 변화를 고찰하였다. 연신에 의한 배향과 응력에 의한 결정화 발현에 의해 PTT/PET 블렌드의 상대 결정화도와 유리 전이 온도가 증가되는 반면 냉결정화 온도 및 냉결정화 엔탈피는 감소하였다. PET 유리 전이 온도 이하 연신의 경우 PET의 첨가에 의해 결정화도는 감소되나 배향도 증가에 의하여 인장강도 및 탄성계수가 증가하였다. 수축률은 주사슬 배향에 따라 증가되나 연신에 의한 결정화도 증가에 의하여 최소화될 수 있음을 알 수 있었다.

Keywords: poly(trimethylene terephthalate); poly(ethylene terephthalate); blend; cold drawing; orientation; crystallization; shrinkage

References
  • 1. Ward M, Wilding Ma, Brody H, J. Polym. Sci. B: Polym. Phys., 14, 263 (1976)
  •  
  • 2. Reinicker R, Pangelinan A, Greschler I, ANTEC Tech. Paper, 46, 2599 (2000)
  •  
  • 3. Kim YH, Lee HM, Kim JC, J. Korean Fiber Soc., 37, 118 (2000)
  •  
  • 4. Desborough IJ, Hall IH, Neisser JZ, Polymer, 20, 545 (1979)
  •  
  • 5. Daudurand SP, Perez S, Revol JF, Brisse F, Polymer, 20, 419 (1979)
  •  
  • 6. Bulkin BJ, Lewin M, Kim M, Macromolecules, 20, 830 (1987)
  •  
  • 7. Bulkin BJ, Lewin M, DeBlase F, Kim M, J. Polym. Mater. Sci. Eng., 54, 397 (1986)
  •  
  • 8. Chisholm BJ, Zimmer JG, J. Appl. Polym. Sci., 76(8), 1296 (2000)
  •  
  • 9. Kim YH, Kim KJ, Lee KM, J. Korean Fiber Soc., 34, 860 (1997)
  •  
  • 10. Lee KM, Kim KJ, Kim YH, Polym.(Korea), 23(1), 56 (1999)
  •  
  • 11. Lim JE, Lee JK, Lee KH, Polym.(Korea), 27(4), 293 (2003)
  •  
  • 12. Ward IM, Wilding MA, Brody H, J. Polym. Sci. B: Polym. Phys., 14, 263 (1976)
  •  
  • 13. Grebowicz JS, Brown H, Chuah H, Olvera JM, Wasiak A, Sajkiewicz P, Ziabicki A, Polymer, 42(16), 7153 (2001)
  •  
  • 14. Chuah HH, Macromolecules, 34(20), 6985 (2001)
  •  
  • 15. Wu J, Schultz JM, Samon JM, Pangelinan AB, Chuah HH, Polymer, 42(16), 7161 (2001)
  •  
  • 16. Lyoo WS, Lee HS, Ji BC, Han SS, Koo K, Kim SS, Kim JH, Lee JS, Son TW, Yoon WS, J. Appl. Polym. Sci., 81(14), 3471 (2001)
  •  
  • 17. Wu G, Li HW, Wu YQ, Cuculo JA, Polymer, 43(18), 4915 (2002)
  •  
  • 18. Jeon BH, Kim W, Kang HJ, Polym.(Korea), 27(5), 477 (2003)
  •  
  • 19. Oh PR, Kim KJ, Kim YH, J. Korean Fiber Soc., 36, 132 (1999)
  •  
  • 20. Kim KJ, Bae JH, Kim YH, Polymer, 42(3), 1023 (2001)
  •  
  • 21. Hong SH, Kim R, Choi CN, Choi H, Lee WE, Cho SY, Polym.(Korea), 27(2), 106 (2003)
  •  
  • 22. Huang JM, Chang FC, J. Appl. Polym. Sci., 84(4), 850 (2002)
  •  
  • 23. Wu PL, Woo EM, J. Polym. Sci. B: Polym. Phys., 40(15), 1571 (2002)
  •  
  • 24. Huang JM, J. Appl. Polym. Sci., 88(9), 2247 (2003)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2004; 28(1): 67-76

    Published online Jan 25, 2004

  • Received on Aug 5, 2003
  • Accepted on Jan 12, 2004