Article
  • Preparation and Properties of Poly(vinyl alcohol)/Chitosan Blend Films
  • Jeong MG, Kim DS, Choi YH, Son TW, Kwon OK, Lim HS
  • 폴리(비닐 알코올)/키토산 블렌드 필름의 제조 및 특성
  • 정민기, 김대선, 최용혁, 손태원, 권오경, 임학상
Abstract
Poly(vinyl alcohol)(PVA)/chitosan blend films with non-toxicity, biodegradability, and biocompatibility were prepared by solution casting. Variation of the physicochemical properties of the blend films was investigated through to several analysis methods. Examination of antibacterial properties revealed that bacterio-static ratios of all blend samples containing chitosan more than 10 wt% were greater than 99.9 %. Moisture regain was increased with increasing chitosan content but the degree of swelling was decreased. Up to chitosan content 15 wt%, the melting and crystallization temperature of blend films was increased with chitosan content. The blends containing chitosan content 10 and 15 wt% gave melting temperature 229 and 228 ℃, respectively. However, the melting temperature was decreased if chitosan content exceeded 20 wt%. The mechanical properties of the blend films were increased with increasing chitosan content in both dry and wet states. The blend film including 15 wt% chitosan exhibited unusually high tensile strength.

독성이 없고 생분해성과 생체적합성을 가지는 폴리(비닐 알코올)/키토산 블렌드 필름들은 용액상태로 캐스팅하여 제조하였다. 블렌드 필름들의 물리화학적 특성들의 변화는 여러 가지의 분석방법을 통해 조사하였다. 항균특성의 고찰에서 키토산이 10 wt% 이상 함유된 모든 블렌드 필름의 정균율은 99.9%로 우수하게 나타났다. 수분율은 키토산의 함량이 증가함에 따라 증가하나 팽윤도는 감소하였다. 키토산 함량이 15 wt%내에서는 블렌드 필름의 용융온도와 결정화온도가 키토산의 함량에 따라 증가하였다. 또한, 키토산이 10, 15 wt% 함유된 블렌드 필름들은 용융온도가 각각 229와 228 ℃로 순수 PVA보다 높은 값을 나타내었다. 그러나 키토산 함량이 20 wt%이상일 경우 용융온도는 감소하였다. 블렌드 필름의 역학적 특성들은 습윤상태 및 건조상태 모두 키토산 함량이 증가함에 따라 증가한다. 키토산 함량이 15 wt%내에서 높은 인장강도를 나타낸다.

Keywords: PVA; Chitosan; Blend; Thermal behavior; Mechanical properties

References
  • 1. Carenza M, Radiat. Phys. Chem., 39, 485 (1992)
  •  
  • 2. Folkes MJ, Hope PSPolymer Blends and Alloys, Chapman & Hall, New York (1985)
  •  
  • 3. Koyama N, Doi Y, Polymer, 38(7), 1589 (1997)
  •  
  • 4. Prahsarn C, Jamieson AM, Polymer, 38(6), 1273 (1997)
  •  
  • 5. Sakurada IPolyvinyl Alcohol Fibers, Marcel Dekker, New York (1985)
  •  
  • 6. Finch CAPolyvinyl Alcohol: Development, John Wiley & Sons, New York (1992)
  •  
  • 7. Hassan CM, Peppas NA, J. Appl. Polym. Sci., 76(14), 2075 (2000)
  •  
  • 8. Azuma Y, Yoshie N, Sakurai M, Inoue Y, Polymer, 33, 4763 (1992)
  •  
  • 9. Muzzarelli RAAChitin, Pergamon Press, Oxford (1977)
  •  
  • 10. Rhoades J, Roller S, Appl. Environ. Microbiol., 66, 80 (2000)
  •  
  • 11. Salmon S, Hudson SM, Rew. Macromol. Chem. Phys., 37, 199 (1997)
  •  
  • 12. Muzzarelli RAA, Jeuniaux C, Gooday GWChitin in Nature and Technology, Plenum Press, New York (1986)
  •  
  • 13. Peniche C, Elvira C, Roman JS, Polymer, 39(25), 6549 (1998)
  •  
  • 14. Xu J, Mccarthy SP, Gross RA, Kaplan DL, Macromolecules, 29(10), 3436 (1996)
  •  
  • 15. Dinesh KS, Alok RR, Macromol. Chem. Phys., 40, 69 (2000)
  •  
  • 16. Kim KH, Kim KS, Lim JS, Shin JS, Chung KH, Polym.(Korea), 12(1), 56 (1988)
  •  
  • 17. Kim YH, Choi JW, Lee EY, Polym.(Korea), 27(5), 405 (2003)
  •  
  • 18. Miya M, Yoshikawa S, Iwamoto R, Mima S, Kobunshi Ronbunshu, 40, 645 (1983)
  •  
  • 19. Nakatsuka S, Andrady AL, J. Appl. Polym. Sci., 44, 17 (1992)
  •  
  • 20. Koyano T, Minoura N, Nagura M, Kobayashi K, J. Biomed. Mater. Res., 39, 486 (1998)
  •  
  • 21. Caner C, Vergano PJ, Wiles JL, J. Food Sci., 63, 1049 (1998)
  •  
  • 22. Rhim JW, Weller CL, Ham KS, Food Sci. Biotechnol., 7, 263 (1998)
  •  
  • 23. Knaul JZ, Kasaai MR, Can. J. Chem., 76, 68 (1998)
  •  
  • 24. Flory PJPrinciples of Polymer Chemistry, Cornell University, Press Itacha and London (1995)
  •  
  • 25. Rao DG, J. Food Sci., 30, 66 (1993)
  •  
  • 26. Tanigawa T, Tanaka Y, Sashiwa H, Saimoto H, Shigemasa YAdvances in Chitin and Chitosan, Elsevier, London (1992)
  •  
  • 27. Jung BO, Kim CH, Choi KS, Lee YM, Kim JJ, J. Appl. Polym. Sci., 72(13), 1713 (1999)
  •  
  • 28. Watt IC, Kenett KH, James JFP, Text. Res. J., 29, 975 (1959)
  •  
  • 29. Kim KY, Lee SY, Min DS, Chung HS, Hwang SJ, Polym.(Korea), 14(5), 527 (1990)
  •  
  • 30. Jiang H, Liang J, Grant JT, Su W, Bunning TJ, Cooper TM, Adams WW, Macromol. Chem. Phys., 198, 1561 (1997)
  •  
  • 31. Sannan T, Kurrita K, Ogura K, Iwakura Y, Polymer, 19, 376 (1973)
  •  
  • 32. Mima S, Miya M, Iwamoto R, Yoshikawa S, J. Appl. Polym. Sci., 28, 1909 (1983)
  •  
  • 33. Iwamoto R, Miya M, Mima S, J. Polym. Sci. B: Polym. Phys., 17, 1507 (1979)
  •  
  • 34. Miya M, Iwamoto R, Mima S, J. Polym. Sci. B: Polym. Phys., 22, 1149 (1984)
  •  
  • 35. Aoi K, Takasu A, Tsuchiya M, Okada M, Macromol. Chem. Phys., 199, 2805 (1998)
  •  
  • 36. Flory PJ, J. Chem. Phys., 10, 51 (1941)
  •  
  • 37. Fujiyama M, Wakino T, J. Appl. Polym. Sci., 42, 2739 (1991)
  •  
  • 38. Nishio Y, Manley RJ, Macromolecules, 21, 1270 (1988)
  •  
  • 39. Kim JH, Lee YM, Polymer, 34, 1952 (1993)
  •  
  • 40. Paul DR, Barlow JW, Keskkula HEncyclopedia of Polymer Science and Engineering, John Wiley & Sons, New York (1989)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2004; 28(3): 253-262

    Published online May 25, 2004

  • Received on Dec 22, 2003
  • Accepted on May 20, 2004