Article
  • Separation and Purification of Chiral Compounds Using Crosslinked Sodium Alginate Membranes
  • Kim JH, Kim SG, Lee KH, Jegal J
  • 가교화된 알진산나트륨막을 이용한 키랄 화합물 분리 정제
  • 김지혜, 김상균, 이규호, 제갈종건
Abstract
Membrane technology was used for the optical resolution of the various racemic compounds such as tryptophan, tyrosine and phenylalanine, using enantioselective membranes prepared from sodium alginate (SA) and glutaraldehyde as a membrane material and crosslinking agent, respectively. The chemical structure of the membranes was characterized with FT-IR spectrophotometry and 3D molecular structure modeling study was done to figure out the optical resolution mechanism through the membrane. Effects of degree of crosslinking, feed concentration, operating pressure and different kinds of feed solution on the membrane performances were studied. As results, it was found that with increasing degree of crosslinking and membrane thickness, and decrease in the concentration of the feed solution and smaller size of solutes, the enantinselectivity of the membrane was improved. When the sodium alginate membranes with 80% of swelling index and 79 μm of thickness were used, 77% of enantiomeric excess was obtained.

트립토판, 타이로신, 페닐알라닌과 같은 라세미 화합물의 광학 분할을 위해 광학 선택성 분리막을 이용한 막 분리법을 이용하였으나, 사용된 분리막 제조를 위해서 막 재료로 알진산나트륨(sodium alginate)을, 가교제로 글루타르알데하이드(glutaraldehyde)를 사용하였다. 제조된 막의 구조는 FT-IR을 이용하여 관찰하였고 라세미화합물의 광학 분할 메카니즘을 확인하기 위해서 모델링을 실시하였다. 막의 가교정도, 공급액의 농도, 조작압력, 그리고 공급액의 종류에 따른 막의 투과 특성을 알아보기 위해 여러 가지 변수를 통한 실험을 실시하였으며, 그 결과 막의 가교도와 두께가 증가할수록, 공급액의 농도와 용질의 크기가 감소할수록 좀 더 높은 광학 분할 능을 나타낸다는 것을 발견하였으며 이때의 enantiomeric excess (%ee) 값은 약 77%로 나타났다.

Keywords: Sodium alginate membrane; optical resolution; α-amino acid

References
  • 1. Drioli E, Giorno LBiocatalytic Membrane Reactor, Taylor & Francis Group (1999)
  •  
  • 2. Quack M, Stohner J, Chirality, 13, 745 (2001)
  •  
  • 3. Ahuja SChiral Separations: Application and Technology, American Chemical Society, Washington D.C. (1997)
  •  
  • 4. Aoki T, Maruyama A, Shinohara K, Oikawa E, Polym. J., 27, 547 (1995)
  •  
  • 5. Aoki T, Shinohara K, Oikawa E, Makromol. Chem. Rapid Commun., 13, 565 (1992)
  •  
  • 6. Shinohara K, Aoki T, Oikawa E, Polymer, 36, 2703 (1995)
  •  
  • 7. Aoki T, Shinohara K, Kaneko T, Oikawa E, Macromolecules, 29(12), 4192 (1996)
  •  
  • 8. Shinohara K, Aoki T, Kaneko T, Oikawa E, Polymer, 42(1), 351 (2001)
  •  
  • 9. Maruyama A, Adachi N, Takatsuki T, Torii M, Sanui K, Ogata N, Macromolecules, 23, 2748 (1990)
  •  
  • 10. Nakagawa T, Toyokawa Y, Abe M, Higuchi A, Macromol. Symp., 84, 209 (1994)
  •  
  • 11. Sartori C, Finch DS, Ralph B, Gilding K, Polymer, 38(1), 43 (1997)
  •  
  • 12. Keurentjes JTF, Voermans FJMMembrane Separations in the Production on Optically Pure Compounds, in Chirality in Industry II, A.N. Collins G.N. Sheldrake and J. Crosby, eds., J. Wiley & Sons (1997)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2004; 28(4): 352-359

    Published online Jul 25, 2004

  • Received on Apr 26, 2004
  • Accepted on Jul 23, 2004