Article
  • Synthesis of Sulfonated PET-g-GMA Fine Ion-exchange Fibers for Water Treatment by Photopolymerization and Their Adsorption Properties for Metal Ions
  • Kwak NS, Hwang TS, Kim SM, Yang YK, Kang KS
  • 광중합법을 이용한 수처리용 설폰산형 PET-g-GMA 극세 이온 교환 섬유의 합성 및 금속 이온 흡착 특성
  • 곽노석, 황택성, 김선미, 양윤규, 강경석
Abstract
The sulfonated PET-g-GMA ion-exchange fine fibers were synthesized by UV radiation-induced graft copolymerization using a photoinitiator, and their chemical structure and adsorption properties were investigated. The optimum values for synthetic conditions - UV intensity, reaction time, and reaction temperature were 450 W, 60 min, and 40 ℃, respectively. Maximum values of the degree of sulfonation and ion exchange capacity were 8.12 mmol/g and 3.25 meq/g, respectively. Tensile strength of sulfonated PET-g-GMA fine ion exchange fibers was lower than that of PET trunk polymer as the grafting reaction rates increased. It was shown that as for the adsorption rate of Ca2+ and Mg2+ by the sulfonated PET-g-GMA fine ion exchange fibers, magnesium ion is slower than calcium ion in the solution. However, in the mixture of the calcium and magnesium ions, the adsorption rate of calcium ion was much slower than that of magnesium ion.

광개시제를 이용한 UV 조사방법으로 설폰화 PET-g-GMA 극세 이온 교환 섬유를 합성하고 이들의 구조 및 흡착 특성을 확인하였다. PET-g-GMA의 그라프트율은 UV 조사량, 조사시간 및 반응온도가 증가함에 따라 증가하였으며, 최적 합성조건은 UV 조사량, 시간, 반응온도가 각각 450 W, 60 min, 40 ℃이었다. 한편 최대 설폰화율과 이온 교환 용량은 각각 8.12 mmol/g, 3.25 meq/g의 값을 나타내었다. 또한 설폰화 PET-g-GMA 극세 이온 교환 섬유의 인장강도는 반응전 PET 기재의 인장강도보다 그라프트 반응율이 증가함에 따라 약간 낮아지는 경향을 보였다. 설폰화 PET-g-GMA 극세 이온 교환 섬유의 칼슘 이온, 마그네슘 이온에 대한 흡착 시험 결과 마그네슘 이온이 칼슘 이옹ㄴ보다 흡착 파과 시간이 길었으며, 칼슘 이온, 마그네슘 혼합 용액에서 마그네슘의 흡착 파괴 시간은 더욱 길어지는 경향을 보였다.

Keywords: UV irradiated polymerization; fine ion exchange fiber; photoinitiator; adsorption

References
  • 1. Yildiz E, Nuhoglu A, Keskinler B, Akay G, Farizoglu B, Desalination, 159(2), 139 (2003)
  •  
  • 2. Han D, Kor. J. Env. Hlth. Soc., 14, 51 (1988)
  •  
  • 3. Ogata N, J. At. Energy Soc. Jpn, 10, 672 (1968)
  •  
  • 4. Jdid EA, Blazy P, Sea Technol., 25, 701 (1990)
  •  
  • 5. Suzuki M, Chihara K, Fujimoto M, Yagi H, Wada A, Bull. Soc. Seawater Soc. Japan, 39, 152 (1985)
  •  
  • 6. Kim SS, Park M, Hur NH, Choi J, Korean J. Environ. Agric., 10, 11 (1991)
  •  
  • 7. Loh FC, Tan KL, Kang ET, Uyama Y, Ikada Y, Polymer, 36(1), 21 (1995)
  •  
  • 8. Yang WT, Ranby B, Polym. Bull., 37(1), 89 (1996)
  •  
  • 9. Ranby B, Int. J. Adhes. Adhes., 19, 337 (1999)
  •  
  • 10. Lee KP, Choi SH, Kang HD, J. Chromatogr. A, 948, 129 (2002)
  •  
  • 11. Yang W, Ranby B, Eur. Polym. J., 35, 1557 (1999)
  •  
  • 12. Ulbricht M, React. Funct. Polym., 31(2), 165 (1996)
  •  
  • 13. Kawai T, Saito K, Sugita K, Kawakami T, Kanno J, Katakai A, Seko N, Sugo T, Radiat. Phys. Chem., 59, 405 (2000)
  •  
  • 14. Ma HM, Davis RH, Bowman CN, Polymer, 42(20), 8333 (2001)
  •  
  • 15. Chun HJ, Cho SM, Lee YM, Lee HK, Suh TS, Shinn KS, J. Appl. Polym. Sci., 72(2), 251 (1999)
  •  
  • 16. Wachinski AM, Etzel JEEnvironmental Ion Exchange, Lewis Publishers, New York (1997)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2004; 28(5): 397-403

    Published online Sep 25, 2004

  • Received on Jun 30, 2004
  • Accepted on Sep 9, 2004