Article
  • Effect of MCM-41 Preparation Methods on the Kinetics of Catalytic Pyrolysis of Linear Low Density Polyethylene
  • Park YK, Kim JS, Jeon JK, Lim JE, Kim JM, Yoo KS
  • MCM-41 촉매 합성법이 선형 저밀도 폴리에틸렌의 촉매 열분해 동역학에 미치는 영향
  • 박영권, 김주식, 전종기, 임정은, 김지만, 유경선
Abstract
The effect of Al-MCM-41 preparation methods on the catalytic degradation of linear low density polyethylene (LLDPE) was investigated. Al-MCM-41 catalysts were synthesized by direct method (Al-MCM-41-D) and post treatment method (Al-MCM-41-P) and their characteristics were elucidated by XRD, BET, NH3, TPD, 27Al MAS NMR. TGA kinetic analysis showed that the catalytic activation energies of Al-MCM-41-D and Al-MCM-41-P were 197.54 and 174.26 kJ/mol, respectively. The higher catalytic activity of Al-MCM-41-P would be attributed to its smaller pore size as well as higher number of acid sites that are accessible.

Al-MCM-41의 제조방법이 선형 저밀도 폴리에틸렌(LLDPE)의 촉매 분해 활성에 어떠한 영향을 주는지 조사하였다. 이를 위해 Al-MCM-41은 직접 합성법(Al-MCM-41-D)과 후처리법(Al-MCM-41-P)의 두 가지 방법으로 제조 되었으며, XRD, BET, NH3 TPD, 27Al MAS NMR 등을 이용하여 이들 촉매 특성을 규명하였다. TGA 동역학 방법을 사용하여 Al-MCM-41-D와 Al-MCM-41-P의 LLDPE 촉매 분해 활성화 에너지를 구한 결과 각각 197.54, 174.26 kJ/mol로 나타났다. 이처럼 Al-MCM-41-P가 Al-MCM-41-D보다 촉매 활성이 높은 이유는 접근 가능한 산점수가 훨씬 많고 상대적으로 기공 크기도 작은 것에 기인한 것으로 여겨진다.

Keywords: MCM-41; LLDPE; pyrolysis; kinetics; preparation methods

References
  • 1. Bagri R, Williams PT, J. Anal. Appl. Pyrolysis, 63, 29 (2002)
  •  
  • 2. Kim HT, Song BS, Park CH, Park YHThe study on the production state and recycling technology of waste mixed plastics, Korea Environments and REcycling Corporation (1996)
  •  
  • 3. Shin DH, Yoon WL, Choi IS, Polym. Sci. Technol., 13(3), 322 (2002)
  •  
  • 4. Park YK, Kim JS, Choi J, Jeon JK, Kim S, Kim SS, Kim JM, Yoo KS, Kor. J. Kor. Soc. Waste Manage., 20, 566 (2003)
  •  
  • 5. Yu HJ, Lee BH, Kim DS, Polym.(Korea), 27(1), 84 (2003)
  •  
  • 6. Williams PT, Chishti HM, J. Anal. Appl. Pyrolysis, 55, 217 (2000)
  •  
  • 7. Mordi RC, Fields R, Dwyer J, J. Anal. Appl. Pyrolysis, 29, 45 (1994)
  •  
  • 8. Manos G, Garforth A, Dwyer J, Ind. Eng. Chem. Res., 39(5), 1198 (2000)
  •  
  • 9. Park JW, Kim JH, Seo G, Polym. Degrad. Stabil., 76, 495 (2002)
  •  
  • 10. Bagri R, Williams PT, J. Anal. Appl. Pyrolysis, 63, 29 (2002)
  •  
  • 11. Takuma K, Uemichi Y, Ayame A, Appl. Catal. A: Gen., 192(2), 273 (2000)
  •  
  • 12. You YS, Shim JS, Kim JH, Seo G, Catal. Lett., 59(2-4), 221 (1999)
  •  
  • 13. You YS, Kim JH, Seo G, Polym. Degrad. Stabil., 72, 329 (2001)
  •  
  • 14. Park DW, Hwang EY, Kim JR, Choi JK, Kim YA, Woo HC, Polym. Degrad. Stabil., 65, 193 (1999)
  •  
  • 15. Kim JM, Kwak JH, Jun S, Ryoo R, J. Phys. Chem., 99(45), 16742 (1995)
  •  
  • 16. Ryoo R, Jun S, Kim JM, Kim MJ, Chem. Commun., 22, 2255 (1997)
  •  
  • 17. Seddegi ZS, Budrthumal U, Al-Arfaj AA, Al-Amer AM, Barri SAI, Appl. Catal. A: Gen., 225(1-2), 167 (2002)
  •  
  • 18. Aguado J, Sotelo JL, Serrano DP, Calles JA, Escola JM, Energy Fuels, 11(6), 1225 (1997)
  •  
  • 19. vanGrieken R, Serrano DP, Aguado J, Garca R, Rojo C, J. Anal. Appl. Pyrolysis, 58, 127 (2001)
  •  
  • 20. Hesse ND, Lin R, Bonnet E, Cooper J, White RL, J. Appl. Polym. Sci., 82(12), 3118 (2001)
  •  
  • 21. Isoda T, Nakahara T, Kusakabe K, Morooka S, Energy Fuels, 112, 1161 (1998)
  •  
  • 22. Jalil PA, J. Anal. Appl. Pyrolysis, 65, 185 (2002)
  •  
  • 23. Serrano DP, Aguado J, Escola JM, Ind. Eng. Chem. Res., 39(5), 1177 (2000)
  •  
  • 24. Flynn JH, Wall LA, J. Research National Bureau Standards-A. Physics and Chemistry, 70A, 487 (1966)
  •  
  • 25. Ryoo R, Kim JM, J. Chem. Soc. Chem. Commun., 711 (1995)
  •  
  • 26. Park YK, Kim JS, Jeon JK, Kim JMSubmitted to Polym. Degrad. Stab.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2005; 29(2): 122-126

    Published online Mar 25, 2005

  • Received on Jul 12, 2004
  • Accepted on Jan 5, 2005