Article
  • Optimal Hydrophilization and Chondrocyte Adhesion of PLLA Films and Scaffolds by Plasma Treatment and Acrylic Acid Grafting
  • Yang HS, Park K, Ahn KD, Kim BS, Han DK
  • 플라스마 처리와 아크릴산 결합에 의한 PLLA 필름 및 지지체의 최적 친수화와 연골세포 점착
  • 양희석, 박귀덕, 안광덕, 김병수, 한동근
Abstract
To utilize as highly functional scaffolds for tissue engineering by improving hydrophobicity and cell compatibility of the exist polymer scaffolds, the biodegradable poly( L-lactic acid) (PLLA) films and scaffolds having the optimal hydrophilicity were prepared by in situ plasma treatment and grafting of a carboxyl acid-containing monomer, acrylic acid (AA) in the chamber. From the results of surface analyses, surface-modified nonporous PLLA film and dual pore scaffold surfaces showed high hydrophilicity due to the decrease in contact angle and the increase in carboxylic groups as compared with untreated PLLA control. In particular, among various surface modification methods, Ar(argon)+AA+AA sample prepared by Ar plasma and then acrylic acid treatments displayed lower contact angle and more carboxylic groups than Ar/AA and Ar+TP(thermal polymerization) samples, indicating that Ar+AA+AA sample was optimally treated for improving its hydrophilicity. In the cases of surface-modified nonporous PLLA films and dual pore scaffolds, the adhesion and proliferation of chondrocytes increased with increasing their hydrophilicity.

기존의 고분자 지지체의 소수성 및 세포친화성을 향상시켜 조직공학용 고기능성 지지체로 사용하기 위해서 여러 가지 플라스마 처리와 카복실기를 함유한 아크릴산(AA)을 직접 chamber내에서 in situ 그래프트 결합을 행하여 최적의 친수성을 갖는 생분해성 poly( L-lactic acid) (PLLA) 필름 및 이중기공 지지체를 제조하였다. 표면분석 결과, 표면개질된 비다공성 PLLA 필름 및 이중기공 지지체 표면은 미처리 PLLA control에 비해서 접촉각의 감소와 카복실기 함량의 증가로 친수성이 크게 증가하였다. 특히 여러 가지 표면개질 방법 중 Ar(아르곤)/AA 시료나 Ar+TP(열중합) 시료보다 는 Ar 플라스마와 AA를 차례로 처리한 Ar+AA+AA 시료가 다른 시료들보다 접촉각이 낮고 카복실기가 많아서 최적의 표면 친수화 처리조건임을 알 수 있었으며, 표면개질된 PLLA 필름 및 이중기공 지지체의 경우 친수성이 증가함에 따라서 연골세포의 점착과 증식도 크게 향상되었다.

Keywords: tissue engineering; biodegradable scaffolds; plasma treatment; acrylic acid grafting; hydrophilization; chondrocyte adhesion

References
  • 1. Langer R, Vacanti JP, Science, 260, 920 (1993)
  •  
  • 2. Hubbell JA, Langer R, Chem. Eng. News, 13, 42 (1995)
  •  
  • 3. Nerem RM, Sambanis A, Tissue Eng., 1, 3 (1995)
  •  
  • 4. Atala A, Lanza RPMethods of Tissue Engineering, Academic Press, San Diego (2002)
  •  
  • 5. Hubbell JA, Trends Polym. Sci., 2, 20 (1994)
  •  
  • 6. Lanza RP, Langer R, Chick WLPrinciple of Tissue Engineering, Academic Press, San Diego (1997)
  •  
  • 7. Patrick Jr CW, Mikos AG, Mcintire LVFrontiers in Tissue Engineering, Elsevier Science Press, Oxford (1998)
  •  
  • 8. Gao J, Niklason L, Langer R, J. Biomed. Mater. Res., 42, 417 (1998)
  •  
  • 9. Park GE, Pattison MA, Park K, Webster TJ, Biomaterials, 26, 3075 (2005)
  •  
  • 10. Cui YL, Qi AD, Liu WG, Wang XH, Wang H, Ma DM, Yao KD, Biomaterials, 24, 3859 (2003)
  •  
  • 11. Boland ED, Telemeco TA, Simpson DG, Wnek GE, Bowlin GL, J. Biomed. Mater. Res.Appl. Biomater., 71B, 144 (2004)
  •  
  • 12. Ma Z, Gao C, Gong Y, Shen J, Biomaterials, 24, 3725 (2003)
  •  
  • 13. Nuutinen JP, Clerc C, Virta T, Tormala P, J. Biomater. Sci.-Polym. Ed., 13, 1325 (2002)
  •  
  • 14. Ma ZW, Gao CY, Juan J, Ji J, Gong YH, Shen JC, J. Appl. Polym. Sci., 85(10), 2163 (2002)
  •  
  • 15. Yang Y, Porte MC, Marmey P, Alicia J, Haj E, Amedee J, Baquey C, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 207, 165 (2003)
  •  
  • 16. Chim H, Ong JL, Schantz JT, Hutmacher DW, Agrawal CM, J. Biomed. Mater. Res., 65A, 327 (2003)
  •  
  • 17. Holy CE, Cheng C, Davies JE, Shoichet MS, Biomaterials, 22, 25 (2001)
  •  
  • 18. Riekerink MBO, Claase MB, Engbers GH, Grijpma DW, Feijen J, J. Biomed. Mater. Res., 65A, 417 (2003)
  •  
  • 19. Yang J, Shi G, Bei J, Wang S, Cao Y, Shang Q, Yang G, Wang W, J. Biomed. Mater. Res., 62, 438 (2002)
  •  
  • 20. Wan Y, Yang J, Yang J, Bei J, Wang S, Biomaterials, 24, 3757 (2003)
  •  
  • 21. Steffens GCM, Nothdurft L, Buse G, Thissen H, Hocher H, Klee D, Biomaterials, 23, 3523 (2002)
  •  
  • 22. Yang J, Bei J, Wang S, Biomaterials, 23, 2607 (2002)
  •  
  • 23. Yang J, Wan Y, Yang J, Bei J, Wang S, J. Biomed. Mater. Res., 67A, 1139 (2003)
  •  
  • 24. Cheng Z, Teoh SH, Biomaterials, 25, 1991 (2004)
  •  
  • 25. Elvira C, Yi F, Azevedo MC, Rebouta L, Cunha AM, Roman JS, Reis R, J. Mater. Sci. -Mater. Med., 14, 187 (2003)
  •  
  • 26. Bisson I, Kosinshi M, Ruault S, Gupta B, Hilborn J, Wurm F, Frey P, Biomaterials, 23, 3149 (2002)
  •  
  • 27. Gupta B, Hilborn JG, Bisson I, Frey P, J. Appl. Polym. Sci., 81(12), 2993 (2001)
  •  
  • 28. Ju YM, Park K, Ahn KD, Rhie JW, Han DKBiomaterials, submitted (2006)
  •  
  • 29. Jung HJ, Park K, Ahn KD, Ahn DJ, Han DKBiomacromolecules, submitted (2006)
  •  
  • 30. Yang HS, Ahn KD, Han DK, Biomater Res., 8, 135 (2004)
  •  
  • 31. Jung KJ, Ahn KD, Han DK, Ahn DJ, Macromol. Res., 13(5), 446 (2005)
  •  
  • 32. Sano S, Kato K, Ikada Y, Biomaterials, 14, 817 (1993)
  •  
  • 33. Han DK, Hubbell JA, Macromolecules, 30(20), 6077 (1997)
  •  
  • 34. Lee JH, Jung HW, Kang IK, Lee HB, Biomaterials, 15, 705 (1994)
  •  
  • 35. Khang G, Lee SJ, Jeon JH, Lee JH, Lee HB, Polym.(Korea), 24(6), 869 (2000)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2006; 30(2): 168-174

    Published online Mar 25, 2006

  • Received on Jan 4, 2006
  • Accepted on Mar 9, 2006