Article
  • Adsorption Properties of Oxidized NO by Plasma Using Hybrid Anion-Exchange Fibers
  • Cho IH, Kang KS, Hwang TS
  • 복합음이온 교환섬유의 플라스마 산화 처리한 NO의 흡착특성
  • 조인희, 강경석, 황택성
Abstract
In this study, adsorption properties of oxidized NO by plasma using aminated polyolefin-g-GMA hybrid anion exchange fibers were investigated. The maximum conversion of NO2 by plasma was 49% at the conditions of 200 ppm NO, 10% O2 and 30 L/min of flow rate. The adsorption content for NO2 of hybrid anion exchange fibers increased with increasing the swelling ratio and the highest value was 1.5 g H2O/g IEF. The adsorption of NO2 by hybrid anion exchange fibers were very fast until 10 min and reached its maximum value of 80% at 120 min. Ion exchange capacity of hybrid anion exchange fibers increased with increasing the swelling ratio and it showed the highest 0.6 mmol/g IEF values at L/D=5. The adsorption isotherm model for hybrid anion exchange fibers were closer to Freundlich than Langmuir adsorption isotherm model. It was shown that adsorption of the multimolecular layer was dominant.

본 연구에서는 아민화 polyolefin-g-GMA 복합음이온 교환섬유를 이용하여 플라스마 산화된 NO의 흡착특성을 고찰하였다. 플라스마 산화에 의한 NO2 전환율은 NO 200 ppm, 산소 10%, 유속 30 L/min일 때 최대 49%이었다. 또한 복합음이온 교환섬유의 NO2 흡착량은 함수율이 높을수록 증가하였고 함수율이 최대 1.5 g H2O/g IEF이었으며, 복합음이온 교환섬유의 NO2 흡착은 10분까지 빠르게 진행되었고 120분에서 최대 80% 흡착되었다. 이온교환 용량은 함수율이 증가함에 따라 증가하였으며, 흡착컬럼 충전 비가 L/D=5에서 0.6 mmol/g IEF로 가장 높았다. 또한 이온교환 섬유의 흡착은 Langmuir 등온흡착 모델보다 Freundlich 등온흡착 모델에 가까웠으며, 다분자층에서의 흡착이 우세하게 발생한 것을 확인할 수 있었다.

Keywords: hybrid anion exchange fibers; plasma oxidation; NOx; adsorption isotherm model; multimolecular layer

References
  • 1. Hwang TS, Kim YS, Park JW, Lee HK, J. Ind. Eng. Chem., 10(1), 139 (2004)
  •  
  • 2. Lee SH, Chung KC, Kim JW, Shin MC, Lee HS, Anal. Sci. Technol., 15, 256 (2002)
  •  
  • 3. Bosch H, Janssen F, Catal. Today, 2, 2369 (1988)
  •  
  • 4. Rea M, Yan KEnergization of pulse corona induced chemical processes, Springer-Verlag Pub. Co., Berlin Heidelberg, 191 (1993)
  •  
  • 5. Chakrabarti A, Mizuno A, Shimizu K, Matsuoka T, Furuta S, IEEE Trans. Ind. Appl., 31, 500 (1994)
  •  
  • 6. Creyghton YLM, van Veldhuizen EM, Rutgers WRElectrical and optical study of pulsed positive corona, Springer-Verlag Pub. Co., Berlin Heidelberg, 205 (1993)
  •  
  • 7. Scott SJA long life, high repetition rate electron beam source, Springer-Verlag Pub. Co., Berlin Heidelberg, 339 (1993)
  •  
  • 8. Pekarek S, Rosenkranz J, Lonekova HGeneration of electron beam for technological processes, Springer-Verlag Pub. Co., Berlin Heidelberg, 345 (1993)
  •  
  • 9. Fernelius WC, Hammett LP, Williams HHIon exhcnage, McGraw-Hill, New York (1962)
  •  
  • 10. Lee SI, Cho KC, Shin CK, J. Korea Society of Environmental Administration, 5, 429 (1999)
  •  
  • 11. Cho IH, Kwak NS, Kang PH, Nho YC, Hwang TS, Polym.(Korea), 30(3), 217 (2006)
  •  
  • 12. Park JY, Koh YS, Lee JD, Son SD, Park SH, Koh HS, KIEEME, 51, 406 (1999)
  •  
  • 13. Kim YS, Hwang TS, Lee HK, Park JW, Kim SM, J. Ind. Eng. Chem., 10(4), 504 (2004)
  •  
  • 14. Hwang TS, Lee JH, Lee MJ, Polym.(Korea), 25(4), 451 (2001)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2006; 30(4): 291-297

    Published online Jul 25, 2006

  • Received on Feb 3, 2006
  • Accepted on Jul 18, 2006