Article
  • Fabrication of Ceramic Line Pattern by UV-Nanoimprint Lithography of Inorganic Polymers
  • Park JH, Pham TA, Lee JJ, Kim DP
  • 무기고분자의 나노임프린트법에 의한 세라믹 선형 패턴의 제조
  • 박준홍, 팜안뚜앙, 이재종, 김동표
Abstract
The SiC-based ceramic nanopatterns were prepared by placing polydimethylsiloxane (PDMS) mold from DVD master on the spincoated polyvinylsilazane (PVS) or allylhydridopolycarbosilane (AHPCS) as ceramic precursors to fabricate line pattern via UV-nanoimprint lithography (UV-NIL), and subsequent pyrolysis at 800 ℃ in nitrogen atmosphere. As the dimensional change of polymeric and ceramic patterns was comparatively investigated by AFM and SEM, the shrinkage in height was 38.5% for PVS derived pattern and 24.1% for AHPCS derived pattern while the shrinkage in width was 18.8% for PVS and 16.7% for AHPCS. It indicates that higher ceramic yield of the ceramic precursor resulted in less shrinkage, and the strong adhesion between the substrate and the pattern caused anisotropic shrinkage. This preliminary work suggests that NIL is a promissing route for fabricating ceramic MEMS devices, with the development on the shrinkage control.

액상의 고분자 전구체 polyvinylsilazane(PVS) 혹은 allylhydridopolycarbosilane(AHPCS)를 실리콘 기판 위에 스핀 코팅한 다음, DVD 마스터로부터 제조된 polydimethylsiloxane(PDMS) 몰드를 이용한 자외선 나노임프린트법으로 나노 크기의 고분자 패턴을 제조하였다. 나아가 질소 분위기하에서 800 ℃ 열처리함으로써 각각 SiCN, SiC 세라믹 패턴도 제조하였다. 가교된 고분자와 세라믹 패턴의 폭과 넓이를 원자힘현미경(AFM)과 주사전자현미경(SEM)으로 관측한 결과 PVS와 AHPCS의 패턴 높이는 각각 38.5%와 24.1%, 패턴 폭은 18.8%와 16.7%의 수축률을 나타내었다. 즉 전구체의 세라믹 수율이 높을수록 세라믹 패턴 수축률은 낮아졌고, 패턴과 기판과의 접착에 의한 수축억제로 이방성 수축현상도 관찰되었다. 본 연구결과는 새로운 세라믹 MEMS 소자 제작공정으로서 나노임프린트법의 가능성과 수축률 제어 연구가 필요함을 제시하고 있다.

Keywords: UV-nanoimprint lithography; inorganic polymer; shrinkage; ceramic pattern

References
  • 1. Mehregancy M, Zorman CA, Rajan N, Wu CH, IEEE, 86, 1594 (1998)
  •  
  • 2. Baldus P, Jansen M, Spoorn D, Science, 285, 699 (1999)
  •  
  • 3. Fredrickson CK, Fan ZH, Lab Chip, 4, 526 (2004)
  •  
  • 4. Fu AY, Spence C, Scherer A, Arnold FH, Quake SR, Nat. Biotechnol., 17, 1109 (1999)
  •  
  • 5. Yang H, Deschatelets P, Brittain ST, Whitesides GM, Adv. Mater., 13, 54 (2001)
  •  
  • 6. Roy S, Zorman CA, Mehregany M, DeAnna R, ANASYS Solutions, 1, 22 (1999)
  •  
  • 7. Dong Y, Zorman C, Molian P, J. Micromech. Microeng., 13, 680 (2003)
  •  
  • 8. Gao D, Wijesundara MJ, Carraro C, Howe RT, Maboudian R, IEEE, 4, 441 (2004)
  •  
  • 9. Liew L, Liu Y, Luo R, Cross T, An L, Bright VM, Dunn ML, Daily JW, Raj R, Sens. Actuators A-Phys., 95, 120 (2002)
  •  
  • 10. Levenson MD, Solid State Technol., 33, 6 (1996)
  •  
  • 11. Chang THP, Thomson MGR, Yu ML, Kratschmer E, Kim HS, Lee KY, Rishton SA, Zolgharnain S, Microelectron. Eng., 32, 113 (1996)
  •  
  • 12. Cavallini M, Murgia M, Biscarini F, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 19, 275 (2002)
  •  
  • 13. Haisma J, Verheijen M, Vandenheuvel K, Vandenberg J, J. Vac. Sci. Technol. B, 14(6), 4124 (1996)
  •  
  • 14. Sung IK, Christian, Mitchell M, Kim DP, Kenis PJA, Adv. Funct. Mater., 15, 1336 (2005)
  •  
  • 15. Nguyen LH, Straub M, Gu M, Adv. Funct. Mater., 15, 209 (2005)
  •  
  • 16. Kumar A, Biebuyck HA, Whitesides GM, Langmuir, 10(5), 1498 (1994)
  •  
  • 17. Kim E, Xia YN, Whitesides GM, Nature, 376(6541), 581 (1995)
  •  
  • 18. Zhao XM, Xia Y, Whitesides GM, Adv. Mater., 8, 837 (1996)
  •  
  • 19. Suh KY, Kim YS, Lee HH, Adv. Mater., 13, 1386 (2001)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2006; 30(5): 407-411

    Published online Sep 25, 2006

  • Received on May 24, 2006
  • Accepted on Aug 29, 2006