• Plasma-Surface-Treatment of Nylon 6 Fiber for the Improvement of Water-Repellency by Low Pressure RF Plasma Discharge Processing
  • Ji YY, Jeong T, Kim SS
  • 나일론 6 섬유의 발수성 향상을 위한 RF 플라스마 표면처리
  • 지영연, 정탁, 김상식
Abstract
It has been reported that the surface properties of the plasma treated material were changed while maintaining its bulk properties. In this study, surface modification of nylon fiber by plasma treatment was tried to attain high water-repellency. Nylon fiber was treated with RF plasma under a vacuum system using various parameters such as gas specious, processing time and processing power. Morphological changes by low pressure plasma treatment were observed using scanning electron microscopy (SEM) and atomic force microscopy(AFM). Moreover, the mechanical and inherent properties were analyzed by tensile strength, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The high water-repellency property of nylon fiber was evaluated by a water-drop standard test under various conditions in terms of aging effect. The results showed that the water-repellency of plasma-surface-treated nylon fiber was greatly improved compared to untreated nylon fiber.

플라스마 표면처리는 전체적인 물성은 유지하고 표면의 특성만을 변화시킨다고 전해지고 있다. 이번 연구에서는 플라스마 처리에 의해 높은 발수성을 나타내는 나일론 6 섬유로의 개질을 시도하였다. 발수성을 나타내는 나일론 섬유는 가스 종류, 처리시간, 인가 파워를 변수로 하여 RF 진공 플라스마 시스템에서 처리되었다. 플라스마 처리된 섬유의 표면을 scanning electron microscopy(SEM)과 atomic force microscopy(AFM)으로 모폴로지 변화를 살펴보았으며, 기계적 특성과 고분자 고유의 특성을 인장강도와 Differential scanning calorimetry(DSC), thermogravimetric analysis(TGA)로 각각 분석하였다. 또한 나일론 섬유의 발수성 평가는 물방울 흡수시간으로 테스트를 실시하였다. 이러한 결과들은 플라스마 표면처리로 인해서 나일론 섬유의 발수성이 향상됨을 나타내었다.

Keywords: fluor compounds; functional fiber; plasma treatment; AFM; water-repellency fiber

References
  • 1. Blossey R, Nat. Mater., 2, 301 (2003)
  •  
  • 2. Baek CH, Kong JY, Hyun SH, Lim YJ, Kim WS, Polym.(Korea), 29(5), 433 (2005)
  •  
  • 3. Kim DO, Kim JH, Polym.(Korea), 27(6), 528 (2003)
  •  
  • 4. Woodward I, Schofield WCE, Roucoules V, Badyal JPS, Langmuir, 19(8), 3432 (2003)
  •  
  • 5. McCord MG, Hwang YJ, Qiu Y, Hughes LK, Bourham MA, J. Appl. Polym. Sci., 88(8), 2038 (2003)
  •  
  • 6. Mukhopadhayay SM, Joshi P, Datta Macdaniel S, J. Appl. Surf. Sci., 201, 219 (2002)
  •  
  • 7. Rickette CL, Wallis AE, Whitehead JC, Zhang K, J. Phys. Chem., 108, 8341 (2004)
  •  
  • 8. Leahy W, Barron V, Baggy M, Young T, Mas A, Schue F, McCabe T, Bridge M, J. Adhes., 77, 251 (2001)
  •  
  • 9. Favia P, Sardella E, Gristina R, Mile A, d'Agostino R, J. Photopolym Sci. Technol., 15, 341 (2002)
  •  
  • 10. Favia P, Sardella E, Gristina R, d'Agostino R, Surf. Coat. Technol., 169, 707 (2003)
  •  
  • 11. Daw R, O'Leary T, Kelly J, Short RD, Cambray-Deakin M, Devlin AJ, Brook IM, Scutt A, Kothari S, Plasmas Polym., 4, 113 (1999)
  •  
  • 12. Boenig HVFundamentals of Plasma Chemistry &Technology, Technomic, Lancaster (1988)
  •  
  • 13. Adamson AWPhysical Chemistry of Surfaces, 5th ed., Wiley, New York, Chapter 10 (1990)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2007; 31(1): 31-36

    Published online Jan 25, 2007

  • Received on Aug 9, 2006
  • Accepted on Dec 21, 2006