Article
  • Preparation and Electrochemical Properties of Polymeric Composite Electrolytes Containing Organic Clay Materials
  • Kim S, Hwang EJ, Lee JR, Kim HI, Park SJ
  • Organic Clay가 첨가된 고분자 복합 전해질의 제조 및 전기화학적 성질
  • 김석, 황은주, 이재락, 김형일, 박수진
Abstract
In this work, polymer/(layered silicate) nanocomposites (PLSN) based on poly(ethylene oxide) (PEO), ethylene carbonate (EC) as a plasticizer, lithium salt (LiClO4), and sodium montmorillonite (Na+-MMT) or organic montmorillonite (organic MMT) clay were fabricated. And the effects of organic MMT on the polymer matrix were investigated as a function of ionic conductivity. For the application to electrolytes an Li batteries, polymer electrolytes containing the organic nanoclays were used in this work. As a result, the spacing between layers and hydrophobicity of the organic nanoclays were increased, affecting on the exfoliation behaviors of the MMT layers in clay/PEO nanocomposites. From ion-conductivity results, the organic-MMT showed higher values than those of Na+-MMT, and the MMT-20A sample that was treated by methyl dihydrogenated tallow ammonium, showed the highest conductivity in this system.

본 연구에서는 poly(ethylene oxide)(PEO), 가소제인 ethylene carbonate(EC), 리튬염인 LiClO4 그리고 Na+-MMT/organic MMT를 이용하여 고분자/층상 실리카 나노복합재료(polymer/(layered silicate) nanocomposites, PLSN)를 제조하였으며, organic MMT의 첨가에 따른 고분자 매트릭스에 미치는 영향을 이온전도도를 통하여 관찰하였다. 리튬전지의 전해질로서의 응용을 위해, Na+를 양이온으로 갖는 순수한 MMT(Na+-MMT)를 유기화한 nanoclay(organic-MMT)를 사용하였다. 그 결과, 층간 거리 및 소수성이 증가하며 이와 같은 특성은 PEO와의 나노복합체를 형성할 때 MMT의 박리 거동에 영향을 미치는 것을 확인할 수 있었다. 또한, 이온전도도에서는 organic MMT가 순수한 Na+-MMT보다 우수함을 나타내었으며, methyl dihydrogenated tallow ammonium으로 개질된 MMT(MMT-20A)를 첨가하였을 때 가장 높은 이온전도도를 보였다.

Keywords: polymer/(layered silicate) nanocomposites; poly(ethylene oxide); organic montmorillonite; ionic conductivity

References
  • 1. Schalkwijk WA, Scrosati B, Advances in Lithium- Ion BatteriesKluwer Academic, New York (2002)
  •  
  • 2. Nazri GA, Pistoia G, Lithium BatteriesKluwer Academic, New York (2004)
  •  
  • 3. Fonseca CP, Rosa DS, Gaboardi F, Neves S, J. Power Sources, 155(2), 381 (2006)
  •  
  • 4. Dias FB, Plomp L, Veldhuis JBJ, J. Power Sources, 88(2), 169 (2000)
  •  
  • 5. Meyer WH, Adv. Mater., 10, 439 (1998)
  •  
  • 6. Song JY, Wang YY, Wan CC, J. Power Sources, 77(2), 183 (1999)
  •  
  • 7. Fenton DE, Parker JM, Wright PV, Polymer, 14, 589 (1973)
  •  
  • 8. Appetecchi GB, Shin JH, Alessandrini F, Passerini S, J. Power Sources, 143(1-2), 236 (2005)
  •  
  • 9. Kim DW, J. Power Sources, 87(1-2), 78 (2000)
  •  
  • 10. Tarascon JM, Armand MB, Nature, 414, 359 (2001)
  •  
  • 11. Gray FMPolymer Eleetrolytes, Royal Society of Chemistry, Cambridge (1997)
  •  
  • 12. Aranda P, Hitzky ER, Acta Polym., 45, 59 (1994)
  •  
  • 13. Wu JH, Lerner MM, Chem. Mater., 5, 835 (1990)
  •  
  • 14. Hitzky ER, Aranda P, Casal B, Galvan JC, Adv. Mater., 7, 180 (1995)
  •  
  • 15. Chen W, Xu Q, Yuan RZ, J. Mater. Sci. Lett., 18(9), 711 (1999)
  •  
  • 16. Kim S, Kang JY, Lee SG, Lee JR, Park SJ, Polym.(Korea), 29(4), 403 (2005)
  •  
  • 17. Kim S, Hwang EJ, Jung Y, Han M, Park SJ, Colloids Surf. A: Physicochem. Eng. Asp.in press
  •  
  • 18. Vaia RA, Ishii H, Giannelis EP, Chem. Mater., 5, 1601 (1993)
  •  
  • 19. Sheffield SH, Mat. Res. Bull., 4, 929 (1979)
  •  
  • 20. Zhu B, Xue L, Wang D, Yu W, J. Inorg. Mater., 2, 176 (1987)
  •  
  • 21. Yu W, Wang D, Zhu B, Wang S, Xue L, Solid State Commun., 61, 271 (1987)
  •  
  • 22. Yano K, Usuki A, Okada A, J. Polym. Sci. A: Polym. Chem., 35(11), 2289 (1997)
  •  
  • 23. Park SJ, Seo DI, Lee JR, J. Colloid Interface Sci., 251(1), 160 (2002)
  •  
  • 24. Aranda P, Mosqueda Y, Perez-Cappe E, Ruiz-Hitzky E, J. Polym. Sci. B: Polym. Phys., 41(24), 3249 (2003)
  •  
  • 25. Liu JM, Pan J, Chen JX, Solid State Ion., 82(3-4), 225 (1995)
  •  
  • 26. Wall HJ, Riley MW, Singhal R, Spontak RJ, Fedkiw PS, Khan SA, Adv. Funct. Mater., 13, 710 (2003)
  •  
  • 27. Therias SM, Mailhot B, Gardette JL, Silva CD, Haidar B, Vidal A, Polym. Degrad. Stabil., 90, 78 (2005)
  •  
  • 28. Vaia RA, Sauer BB, Tse OK, Giannelis EP, J. Polym. Sci. B: Polym. Phys., 35, 57 (1997)
  •  
  • 29. Sreekanth T, Reddy MJ, Subramanyam S, Subba Rao UV, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 64, 107 (1999)
  •  
  • 30. Reddy MJ, Chu PP, Electrochim. Acta, 47(8), 1189 (2002)
  •  
  • 31. Kurian M, Galvin ME, Trapa PE, Sadoway DR, Mayes AM, Electrochim. Acta, 50(10), 2125 (2005)
  •  
  • 32. Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson MA, Electrochim. Acta, 46(16), 2457 (2001)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2007; 31(4): 297-301

    Published online Jul 25, 2007

  • Received on Jan 22, 2007
  • Accepted on May 10, 2007