Article
  • Sustained Release of Proteins Using Small Intestinal Submucosa Modified PLGA Scaffold
  • Ko YK, Choi MK, Kim SH, Kim GA, Lee HB, Rhee JM, Khang G
  • SIS로 개질된 PLGA 담체에서의 단백질의 서방화
  • 고연경, 최명규, 김순희, 김근아, 이해방, 이종문, 강길선
Abstract
In this study, we fabricated poly(lactide-co-glycolide)(PLGA) scaffold modified with small intestinal submucosa (SIS) as a drug delivery matrix of bioactive molecules. SIS derived from the submucosa layer of porcine intestine has been widely used as biomaterial because of low immune response. PLGA scaffold was prepared by the method of solvent casting/salt leaching. Novel composite scaffolds of SIS/PLGA were manufactured by simple immersion method of PLGA scaffold in SIS solution under vacuum. SEM observation shows that PLGA and SIS/PLGA scaffolds have interconnective and open pores. Escpecially, SIS/PLGA scaffold showed that micro-sponge of SIS with interconnected pore structures were formed in the pores of PLGA scaffold. In order to assay release profile of proteins, we manufactured FITC conjugated BSA loaded PLGA and SIS/PLGA scaffold. And the release amount was identified by fluorescence intensity using the fluorescence spectrophotometer. The initial burst of BSA containing SIS/PLGA scaffolds was lower than that of PLGA scaffolds resulting in constant release. And release of BSA in SIS/PLGA scaffold was fast and incremental because of the increased content of BSA. In conclusion, we confirmed that penetrated SIS solution prevented the initial burst of BSA and PLGA modified with SIS scaffold is useful as protein carriers with controlled release pattern.

단백질 및 펩타이드의 서방형 약물전달체로서 소장점막하조직(SIS)으로 개질된 PLGA 담체를 제조하고자 하였으며, SIS/PLGA 담체는 용매 캐스팅/염 추출법에 의해 준비된 PLGA 담체에 SIS 용액을 첨가하여 단순 함침방법으로 제조하였다. 본 실험에서 사용된 돼지의 소장 점막층에서 유래된 SIS는 면역거부반응이 적어 생체재료로 널리 사용되고 있다. 제조된 PLGA 및 SIS/PLGA 담체를 SEM을 통한 표면 및 내부 관찰결과 두 담체 모두 열린 다공구조를 이루며, 특히 SIS/PLGA 담체는 PLGA 담체의 다공 내부에 SIS가 침투되어 작은 네트워크를 형성하고 있음을 확인하였다. 또한 단백질의 방출경향을 확인하기 위하여 형광이 결합된 소 혈청 알부민(FITC-BSA)을 PLGA 및 SIS/PLGA 담체에 담지시킨 후, 형광광도계를 통해 이들의 방출거동을 확인하였다. PLGA 담체와 비교할 때 SIS/PLGA 담체에서의 BSA의 방출은 초기방출량이 적고 지속적으로 일정량이 방출되는 거동을 확인할 수 있었으며 함량별 BSA 농도에 따른 SIS/PLGA 담체에서의 방출은 BSA의 양이 증가할수록 빠르고 많은 양이 방출되는 경향성 있는 방출패턴을 보임을 확인하였다. 결론적으로 PLGA 담체에 침투한 SIS 젤이 BSA의 급격한 초기방출을 억제하며, SIS로 개질된 PLGA 담체는 방출조절이 가능한 약물전달체로서 매우 유용할 것으로 사료된다.

Keywords: protein release; PLGA; scaffold; small intestinal submucosa; BSA

References
  • 1. Tessmar JK, Gopferich AM, Adv. Drug Deliv. Rev., 59, 274 (2007)
  •  
  • 2. Sokolsky-Papkov M, Agashi K, Olaye A, Shakesheff K, Domb AJ, Adv. Drug Deliv. Rev., 59, 187 (2007)
  •  
  • 3. Hyun H, Lee JH, Seo KS, Kim MS, Rhee JM, Lee HB, Khang G, Polym.(Korea), 29(5), 468 (2005)
  •  
  • 4. Lewis DH, Chasin M, Biodegradable Polyemrs as Drug Delivery SystemR. Langer, Editor, Marcel Dekker, New York (1990)
  •  
  • 5. Lee SJ, Khang G, Lee YM, Lee HB, J. Biomater. Sci.-Polym. Ed., 13, 197 (2002)
  •  
  • 6. Penco M, Marchioni S, Ferruti P, Datone S, Deghenghi P, Biomaterials, 17, 1583 (1996)
  •  
  • 7. Seong H, Moon DS, Khang G, Lee JS, Lee HB, Polym.(Korea), 26(1), 128 (2002)
  •  
  • 8. Park JS, Shin JH, Lee DH, Rhee JM, Kim MS, Lee HB, Khang G, Polym.(Korea), 31(3), 201 (2007)
  •  
  • 9. Jang WY, Kim SH, Lee I, Kim MS, Rhee JM, Khang G, Lee HB, Tissue Eng. Regen. Med., 2, 100 (2005)
  •  
  • 10. Jeon EK, Whang HJ, Khang G, Lee I, Rhee JM, Lee HB, Polym.(Korea), 25(6), 893 (2001)
  •  
  • 11. Kim SK, Kim SH, Lee HR, Cho MH, Kim MS, Khang G, Lee HB, Tissue Eng. Regen. Med., 2, 388 (2005)
  •  
  • 12. Ko YK, Kim SH, Jeong JS, Park JS, Lim JY, Kim MS, Lee HB, Khang G, Polym.(Korea), 31(6), 505 (2007)
  •  
  • 13. Coombes AG, Yeh MK, Lavelle EC, David SS, J. Control. Release, 52, 311 (1998)
  •  
  • 14. Seo KS, Park CS, Kim MS, Cho SH, Lee HB, Khang G, Polym.(Korea), 28(3), 211 (2004)
  •  
  • 15. Merrill EW, Salztman EW, J. Am. Soc. Artif. Intern. Organs, 6, 60 (1983)
  •  
  • 16. Iwata M, Ueda H, Drug Dev. Ind. Pharm., 22, 1161 (1996)
  •  
  • 17. Chen G, Sato T, Tanaka J, Tateishi T, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., C26, 118 (2006)
  •  
  • 18. Kim SH, Choi BS, Ko YK, Ha HJ, Yoon SJ, Rhee JM, Kim MS, Lee HB, Khang G, Key Eng. Mater., 342-343, 389 (2007)
  •  
  • 19. Kim MS, Hong KD, Shin HW, Kim SH, Kim SH, Lee MS, Jang WY, Khang G, Lee HB, Int. J. Biol. Macromol., 36, 54 (2005)
  •  
  • 20. Lamme EN, Vries HJ, Veen HV, Gabbiani G, Westerhof W, Middelkoop E, J. Histochem. Cytochem., 44, 1311 (1996)
  •  
  • 21. Voytik-Harvin SL, Brightman AO, Kraine MR, Waisner B, Badylack SF, J. Cell. Biochem., 67, 478 (1997)
  •  
  • 22. Shin HW, Kim SH, Jang JW, Kim MS, Cho SH, Lee HB, Khang G, Polym.(Korea), 28(2), 194 (2004)
  •  
  • 23. Kim SH, Yun SJ, Jang JW, Kim MS, Khang G, Lee HB, Polym.(Korea), 30(1), 14 (2006)
  •  
  • 24. Hong KD, Seo KS, Kim SH, Kim SK, Khang G, Shin HS, Kim MS, Lee HB, Polym.(Korea), 29(3), 282 (2005)
  •  
  • 25. Cho MH, Kim SK, Hoon H, Shin YN, Kim MS, Lee B, Lee JS, Khang G, Lee HB, Lee I, Tissue Eng. Regen. Med., 3, 46 (2006)
  •  
  • 26. Jang JW, Park KS, Kim SH, Park JS, Kim MS, Han CW, Rhee JM, Khang G, Lee HB, Tissue Eng. Regen. Med., 2, 34 (2005)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2008; 32(3): 199-205

    Published online May 25, 2008

  • Received on Oct 16, 2007
  • Accepted on Nov 22, 2007