Article
  • Preparation of the Conducting Polyaniline-HIPS Blends for Injection Molding by Toluene Solution Casting
  • Lee JH, Kim EO
  • Toluene 용액 캐스팅에 의한 사출용 전도성 Polyaniline-HIPS 블렌드 제조
  • 이종혁, 김은옥
Abstract
Polyaniline Emeraldine salt (PANI-salt) prepared by the common chemical oxidative polymerization caused the corrosion of the metallic injection mold by protonic acid such as HCl which used as a dopant. PANI-salt, polyaniline doped with dodecylbenzenesulfonic acid (DBSA), was obtained by the emulsion polymerization in nonpolar organic solvent, toluene. In this study DBSA was used as a dopant along with a surfactant. PANI-salt and high impact polystyrene (HIPS) have a good solubility in toluene. Blends with different ratio of PANI and HIPS were prepared through a solution-cast blending. The structure of PANI-salt was characterized by FT-IR and UV-Vis. The morphology, thermal, and electrical properties for PANI-HIPS blends were investigated. Injection molded under 103 ℃, 120 psi, PANIHIPS showed the highest electrical conductivity (6.02×10^(-5) S/cm) after blending PANI (50 mL) and HIPS (1 g).

화학적 산화중합에 의한 polyaniline emeraldine salt(PANI-salt)는 도펀트로 존재하는 HCl과 같은 양성 자산으로 인한 금속성 사출금형 부식이 발생한다. 본 연구에서는 비극성 유기용매인 톨루엔, 도펀트와 계면활성제 역할을 하는 dodecylbenzenesulfonic acid(DBSA)를 사용하여 유화 중합법으로 PANI-salt를 합성한 후, 공용매 toluene에서 PANI-salt와 high impact polystyrene(HIPS)를 다양한 비율로 solution-cast 혼합하여 PANI-HIPS 블렌드를 얻었다. FT-IR과 UV-Vis.로 PANI-salt 구조를 확인하였고, PANI-HIPS 블렌드의 모폴로지, 열적 및 전기적 특성을 확인하였다. PANI(50 mL)와 HIPS(1 g)을 혼합하여 사출온도 103 ℃, 사출압력 120 psi 하에서 사출한 PANI-HIPS 사출품에서 가장 높은 전기전도도(6.02×10^(-5) S/cm)가 나타났다.

Keywords: injection molding; polyaniline-HIPS blend; solution-cast blending; emulsion polymerization; conducting polymer.

References
  • 1. Skotheim TA, Handbook of Conducting Polymers, Dekker, New York, (1986)
  •  
  • 2. Rhee HW, Kim CY, Polym. Sci. Technol., 2(3), 149 (1991)
  •  
  • 3. Kahol PK, Soilid State Commun., 117, 37 (2001)
  •  
  • 4. Frommer JE, Chance RR, Encyclopedia of Polymer Science and Engineering, Wiley, N.Y., Vol 5 (1988)
  •  
  • 5. Skotheim TA, Elsenbaumer RL, Reynolds JR, Handbook of Conducting Polymers, Marcel Dekker, New York, Vol l and 2 (1988)
  •  
  • 6. Kim WJ, Kim TY, Ko JW, Kim YS, Park CM, Suh KS, KIEE, 53, 305 (2004)
  •  
  • 7. Nalwa HS, Handbook of Organic Conductive Molecules and Polymers, Wiley N.Y., pp 506-572 (1997)
  •  
  • 8. Skotheim TA, Elsenbaumer RL, Reynolds JR, Handbook of Conducting Polymers, Marcel Dekker, New York, pp 707-726 (1998)
  •  
  • 9. MacDiarmid AG, Chiang JC, Halpern M, Huang WS, Mu SL, Somasiri NLD, Wu W, Yaniger SI, Mol. Cryst. Liq. Cryst., 121, 173 (1985)
  •  
  • 10. Levon K, Ho KH, Zheng WY, Laakso J, Karna T, Taka T, Osterholm JE, Polymer, 36(14), 2733 (1995)
  •  
  • 11. Kim WJ, Electrical Properties of Polyaniline/Polystyrene Blends, Master’s thesis, The Korea Univ. (2003)
  •  
  • 12. Lee BH, Polyaniline Prepared by One-Step Emulsion Polymerization and Properties of its Conducting Blends, Master’s thesis, The Korea Univ. (2001)
  •  
  • 13. Kim JY, Kwon SJ, Han SW, Kim ER, Polymer, 27, 549 (2003)
  •  
  • 14. Kim DS, Melt Processible Conducting Polyaniline Blends: Mechanical and Electrical Properties, Master’s thesis, The Korea Univ. (2003)
  •  
  • 15. Haba Y, Segal E, Narkis M, Titelman GI, Siegmann A, Synthetic Met., 106, 59 (1999)
  •  
  • 16. Lim HJ, Kim KY, Lee SJ, Theories and Applications of Chem, Proceedings of KIChE Meetings, 8, 4902 (2002)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2009; 33(3): 203-206

    Published online May 25, 2009

  • Received on Oct 20, 2008
  • Accepted on Jan 19, 2009