Article
  • Empirical Study for the Effects of Filler Shape on the Thermal Expansion Coefficient of PP Composites
  • Hwang HY, Jeoung SK, Shim JH, Kim JM, Lee KY
  • 충전제 함량 및 형태에 따른 PP복합체의 열팽창계수 변화에 대한 실증적 연구
  • 황효연, 정선경, 심제현, 김재민, 이기윤
Abstract
The effects of the filler shapes and contents on the coefficient of thermal expansion (CTE) for polypropylene (PP) composites which included three dimensional ellipsoids (a1>a2>a3), as determined by two aspect ratios (ρα=a1/a3 and ρβ=a1/a2) were analyzed by the theoretical approach proposed by Lee and Paul and compared with the experimental results. The shapes of fillers in the composites were various, such as spherical, fiber, disc, and ellipsoid, using barium sulfate, glass fiber, and mica. The longitudinal CTE of barium sulfate whose shape was sphere (ρα= ρβ=1) decreased. For the glass fiber, primary aspect ratio decreased with the filler content, and longitudinal CTE decreased as filler contents increased. Normal CTE initially increased in the lower filler content. For the mica, longitudinal and transverse CTE decreased but normal CTE increased in the lower filler content like predicted values.

2개의 종횡비에 의해 특징지어진 3차원 타원체를 사용하여 PP복합체의 충전제 형태와 함량이 열팽창률에 미치는 영향에 대해 Lee와 Paul에 의해 제안된 이론적인 값과 실험적인 결과값이 비교분석되었다. 충전제의 형태는 구형에 황산바륨을, 섬유형에는 유리섬유를, 판상형에는 운모를 사용하였다. 실험의 결과로서 구형을 갖는 황산바륨은 종횡비가 1의 값을 갖고 이론과 같이 열팽창률이 감소하였다. 유리섬유의 경우 함량증가에 따라 종횡비는 42, 37, 25, 20으로 감소하였으며 종단방향에선 열팽창률이 감소하였지만 수직방향에서는 증가하였다. 운모의 경우 그 함량증가에 따라 모두 종단방향과 횡단방향에서 감소하고 수직방향에서 증가하였다. 종횡비의 값은 각각, ρα=13.5, ρβ=1.8이었다.

Keywords: coefficient of thermal expansion; aspect ratio; PP composite; filler

References
  • 1. Eshelby JD, Proc. Roy. Soc. Lond., A241, 376 (1957)
  •  
  • 2. Hill R, J. Mech. Phys. Solids, 12, 199 (1964)
  •  
  • 3. Mori T, Tanaka K, Acta Metall., 21, 571 (1963)
  •  
  • 4. Halpin JCPrimer on Composite Materials Analysis, Technomic Pub. Co. Inc., Lancaster (1992)
  •  
  • 5. Tandon GP, Weng GJ, Polym. Compos., 5, 327 (1984)
  •  
  • 6. Schapery RA, J. Compos. Mater., 2, 380 (1968)
  •  
  • 7. Wakashima K, Otsuka M, Umekawa S, J. Compos. Mater., 8, 391 (1974)
  •  
  • 8. Chow TS, J. Polym. Sci. Polym. Phys., 16, 967 (1978)
  •  
  • 9. Lee KY, Paul DR, Polymer, 46(21), 9064 (2005)
  •  
  • 10. Lee KY, Kim KH, Jeoung SK, Ju SI, Shim JH, Kim NH, Lee SG, Lee SM, Lee JK, Paul DR, Polymer, 48(14), 4174 (2007)
  •  
  • 11. Lee KY, Hong SR, Jeoung SK, Kim NH, Lee SG, Paul DR, Polymer, 49(8), 2146 (2008)
  •  
  • 12. Kim JM, Jeoung SK, Shim JH, Hwang HY, Lee KY, Polym.(Korea), 34(4), 346 (2010)
  •  
  • 13. Mura TMicromechanics of Defects in Solids, 2nd Ed., The Hague, Martinus Nijhoff, p 74 (1987)
  •  
  • 14. Tucker CL, Liang E, Compos. Sci. Technol., 59, 655 (1999)
  •  
  • 15. Yoon PJ, Fornes TD, Paul DR, Polymer, 43(25), 6727 (2002)
  •  
  • 16. Lee HS, Fasulo PD, Rodgers WR, Paul DR, Polymer, 46(25), 11673 (2005)
  •  
  • 17. Howe DV, Mark JEPolymer data handbook, Oxford University Press, Oxford (1999)
  •  
  • 18. Mavko G, Mukerji T, Dvorkin JThe Rock Physics Handbook, Cambridge University Press, Cambridge (1998)
  •  
  • 19. Margolis JMAdvanced Thermoset Composites Industrial and Commercial Applications, Van Nostrand Reinhold Co., NY (1986)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2010; 34(4): 352-356

    Published online Jul 25, 2010

  • Received on Feb 5, 2010
  • Accepted on Feb 26, 2010