Article
  • Probe Diffusion and Viscosity Properties in Dimethyl Sulfoxide Solution of Poly(vinyl alcohol) with High Degree of Hydrolysis
  • Eom HS, Park IH
  • 고검화도의 폴리(비닐 알코올)/디메틸설폭사이드 용액에서의 점성도 특성과 탐침입자의 확산
  • 엄효상, 박일현
Abstract
Poly(vinyl alcohol)(PVA) with high degree of hydrolysis of above 98% was dissolved in dimethyl sulfoxide(DMSO), and the shear viscosity was measured up to C = 0.14 g/mL in the semi-dilute solution regime. Next, as probe particle, polystyrene(PS) latex was introduced into this matrix system and its delayed diffusion due to polymer concentration was investigated by means of dynamic light scattering. When the solution viscosity of PVA/DMSO was plotted against the reduced concentration C[η], which is scaled by the intrinsic viscosity, the molecular weight dependence was strongly appeared at C[η]>2. Some heterogeneties in polymer solution were considered as its source. Contrary, the diffusion of probe particle in the matrix solution was observed as a single mode motion at whole concentration range but its ratio of its diffusion coefficient at solution to that at solvent, D/Do did not show any molecular weight dependence at all. However, the application limit of the stretched exponential function was disclosed at C[η]>2.5.

고검화도(98%이상)의 폴리(비닐 알코올)(PVA)를 디메틸설폭사이드(DMSO) 용매에 녹인 뒤 PVA 준희박용액 대에서 농도 C = 0.14 g/mL까지 점성도를 측정하였으며, 이 시스템을 매트릭스로 하여 폴리스티렌(PS) 라텍스 입자의 확산운동 지연을 동적 광산란법으로 조사하였다. PVA/DMSO계의 점성도를 고유점성도 [η]로 스케일된 환산농도 C[η]에 대하여 도시하였을 때 C[η]>2에서는 분자량 의존성이 강하게 나타났으며, 그 원인은 PVA 용액내에 존재하는 불균일 영역때문인 것으로 추정하였다. 그러나 매트릭스 내에서 탐침입자의 확산운동은 모든 측정농도에서 단일모드로 관찰되었고, 용액상 및 용매상에서의 확산계수의 비인 D/Do를 C[η]로 도시할 때 전체 농도 범위에서 분자량 의존성은 전혀 나타나지 않았으나 신장지수함수의 적용 한계는 C[η]>2.5인 것으로 관찰되었다.

Keywords: poly(vinyl alcohol); solution viscosity; semi-dilute; probe diffusion; dynamic light scattering

References
  • 1. Phillies GDJ, Ullmann GS, Ullmann K, J. Chem. Phys., 82, 5242 (1985)
  •  
  • 2. Phillies GDJ, Macromolecules, 19, 2367 (1986)
  •  
  • 3. Phillies GDJ, Macromolecules, 21, 3101 (1988)
  •  
  • 4. Phillies GDJ, Peczak P, Macromolecules, 21, 214 (1988)
  •  
  • 5. Wheeler LM, Lodge TP, Macromolecules, 22, 3399 (1989)
  •  
  • 6. Phillies GDJ, J. Phys. Chem., 96, 10061 (1992)
  •  
  • 7. Phillies GDJ, Clomenil D, Macromolecules, 26, 167 (1993)
  •  
  • 8. Onyenemezu CD, Gold D, Roman M, Miller WG, Macromolecules, 26, 3833 (1993)
  •  
  • 9. Park HS, Sung JM, Chang TH, Macromolecules, 29(9), 3216 (1996)
  •  
  • 10. Gold D, Onyenemezu C, Miller WG, Macromolecules, 29(17), 5700 (1996)
  •  
  • 11. Ngai KL, Phillies GD, J. Chem. Phys., 105(18), 8385 (1996)
  •  
  • 12. Phillies GD, Lacroix M, Yambert J, J. Phys. Chem. B, 101(26), 5124 (1997)
  •  
  • 13. Streletzky KA, Phillies GDJ, Macromolecules, 32(1), 145 (1999)
  •  
  • 14. Bremmell KE, Wissenden N, Dunstan DE, Adv. Colloid Interface Sci., 89-90, 141 (2001)
  •  
  • 15. Bremmell KE, Dunstan DE, Macromolecules, 35(6), 1994 (2002)
  •  
  • 16. Jena SS, Bloomfield VA, Macromolecules, 38(25), 10551 (2005)
  •  
  • 17. Yang C, Meng B, Liu XY, Chen MQ, Hua YF, Ni ZB, Polymer, 47(23), 8044 (2006)
  •  
  • 18. Choi YW, Lee S, Kim K, Russo PS, Sohn D, J. Colloid Interface Sci., 313(2), 469 (2007)
  •  
  • 19. Michelman-Ribeiro A, Horkay F, Nossal R, Boukari H, Biomacromolecules, 8(5), 1595 (2007)
  •  
  • 20. Suzuki Y, Nishio I, Phys. Rev. B, 45, 4614 (1992)
  •  
  • 21. Shibayama M, Isaka Y, Shiwa Y, Macromolecules, 32(21), 7086 (1999)
  •  
  • 22. Bohidar HB, Ghosh S, Eur. Polym. J., 36, 2545 (2000)
  •  
  • 23. Biehl R, Guo X, Prud'homme RK, Monlenbusch M, Allgeier J, Richter D, Physica B, 350, 76 (2004)
  •  
  • 24. Diaz-Leyva P, Perez E, Arauz-Lara JL, J. Chem. Phys., 121(18), 9103 (2004)
  •  
  • 25. Michelman-Ribeiro A, Boukari H, Nossal R, Horkay F, Macromol. Symp., 227, 221 (2005)
  •  
  • 26. Kwon K, Chang T, Polym. Sci. Technol., 13(3), 384 (2002)
  •  
  • 27. Park KH, Polym. Sci. Technol., 19(6), 556 (2008)
  •  
  • 28. Park HW, Jung J, Chang T, Macromol. Res., 17(6), 365 (2009)
  •  
  • 29. Verkman AS, Trends Biochem. Sci., 27, 27 (2002)
  •  
  • 30. Shin BC, Cho SH, Kim MS, Polym. Sci. Technol., 14(3), 298 (2003)
  •  
  • 31. Oh EJ, Yang JA, Yang SY, Kim JK, Hahn SK, Polym. Sci. Technol., 18(5), 444 (2007)
  •  
  • 32. Lee JI, Yoo HS, Polym. Sci. Technol., 19(2), 146 (2008)
  •  
  • 33. Park S, Chang T, Park IH, Macromolecules, 24, 5729 (1991)
  •  
  • 34. Sperling LHIntroduction to Physical Polymer Science, 4th Ed., Wiley, New York (2006)
  •  
  • 35. Mark JEPolymer Data Handbook, Oxford University Press, New York (1999)
  •  
  • 36. Graessley WW, Adv. Polym. Sci., 16, 43 (1974)
  •  
  • 37. Kulicke WM, Keniewske R, Rheol. Acta, 23, 75 (1984)
  •  
  • 38. Ren A, Ellis PR, Ross-Murphy SB, Wang Q, Wood PJ, Carbohydrate Polym., 53, 401 (2003)
  •  
  • 39. Park IH, Yu YC, Park KS, Lee DI, Lyoo WS, Polym.(Korea), 30(3), 271 (2006)
  •  
  • 40. Ovenall DW, Macromolecules, 17, 1458 (1984)
  •  
  • 41. Donath E, Krabi A, Nirschl M, Shilov VM, Zharkikh ML, Vincent B, J. Chem. Soc. Faraday Trans., 93, 115 (1997)
  •  
  • 42. Hoogendam CW, Peters JCW, Tuinier R, de Keizer A, Stuart MAC, Bijsterbosch BH, J. Colloid Interface Sci., 207(2), 309 (1998)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2010; 34(5): 415-423

    Published online Sep 25, 2010

  • Received on Apr 5, 2010
  • Accepted on May 1, 2010