Article
  • Inverse Emulsion Polymerization of Water Absorbent Polymer for Strength Enhancement of Mortars
  • Hwang KS, Jung MG, Jang SS, Jung YW, Lee SH, Ha KR
  • 모르타르 강도 증진을 위한 고분자 흡수제의 역유화 중합
  • 황기섭, 정명근, 장석수, 정용욱, 이승한, 하기룡
Abstract
Sodium polyacrylate (PAANa) was synthesized by inverse emulsion polymerization method to absorb excess water in concrete. Liquid paraffin was used as a continuous phase. Acrylic acid (AA) was neutralized by aqueous sodium hydroxide solution (8 M). Different amount of N,N'-methylene bisacrylamide (MBA) was used as a crosslinking agent to change crosslinking density of the synthesized PAANa. The size distribution of synthesized particles was measured by particle size analyzer. Swelling ratio of crosslinked PAANa was evaluated from the equation in D. I. water, cement aqueous solution, and Ca (OH)2 aqueous solution. The FTIR spectroscopy was used to characterize Ca^(2+) ion interaction with PAANa. Incorporation of 1.0 wt% PAANa into cement increased compressive and flexural strength approximately 30% and 10%, respectively, compared with those of ordinary portland cement.

콘크리트 제조 시 사용되는 잉여수를 흡수하기 위하여 흡수성의 sodium polyacrylate(PAANa)를 역유화중 합법으로 제조하였다. 연속상은 paraffin liquid를 사용하였으며 acrylic acid(AA)는 NaOH로 중화시켜 사용하였다. 가교제는 N,N'-methylene bisacrylamide(MBA)를 사용하였고 첨가량을 다르게 하여 중합을 실시하였다. 중합된 PAANa들의 입자크기 분석을 실시하고 이들이 탈이온수, 시멘트 포화수용액 및 Ca(OH)2 수용액에서의 팽윤비를 측정하였다. Ca^(2+) 이온과 PAANa의 상호작용을 관찰하기 위하여 FTIR spectroscopy 분석을 실시하였다. 중합된 PAANa를 포틀랜드 시멘트에 1 wt% 혼합 후 시멘트 모르타르 공시체의 압축강도와 휨강도를 측정한 결과, AA에 대하여 0.15 mol%의 MBA를 첨가하여 중합한 PAANa를 첨가하여 제조한 PAANa-시멘트가 일반 포틀랜드 시멘트와 비교하여 압축강도 약 30% 및 휨강도 약 10%가 각각 증가함을 확인하였다.

Keywords: sodium polyacrylate; swelling ratio; cement; absorbent; particle size

References
  • 1. Williams DA, Saak AW, Jennings HM, Cement Concrete Res., 29, 1491 (1999)
  •  
  • 2. Rha CY, Seong JW, Kim CE, Lee SK, Kim WK, J. Mater. Sci., 34(19), 4653 (1999)
  •  
  • 3. Rha CY, Kim CE, Lee CS, Kim KI, Lee SK, Cement Concreate Res., 29, 231 (1999)
  •  
  • 4. Zhang Y, Deng M, He P, Polym.(Korea), 30(4), 286 (2006)
  •  
  • 5. Sohn O, Sim SJ, Lee DH, Lee YK, Kim JH, Kim D, Polym.(Korea), 28(1), 18 (2004)
  •  
  • 6. Zhang J, Wang A, React. Funct. Polym., 67, 737 (2007)
  •  
  • 7. Dowding PJ, Vincent B, Colloids Surf. A: Physicochem. Eng. Aspects, 161, 259 (2000)
  •  
  • 8. Lee WF, Chen YC, Eur. Polym. J., 41, 1605 (2005)
  •  
  • 9. Mylonas Y, Bokias G, Iliopoulos I, Stakos G, Eur. Polym. J., 42, 849 (2006)
  •  
  • 10. Sadeghi M, Hosseinzadeh H, Turk. J. Chem., 32, 375 (2008)
  •  
  • 11. Flory PJPrinciples of Polymer Chemistry, Cornell University Press, Ithaca, NY. (1953)
  •  
  • 12. Ogawa I, Yamano H, Miyagawa K, J. Appl. Polym. Sci., 47, 217 (1993)
  •  
  • 13. Luo YD, Dai CA, Chiu WY, J. Colloid Interface Sci., 330(1), 170 (2009)
  •  
  • 14. Li A, Zhang J, Wang A, Polym. Adv. Tech., 16, 675 (2005)
  •  
  • 15. Snuparek J, Cermark V, Eur. Polym. J., 33, 1345 (1997)
  •  
  • 16. Khoi NV, Tung NT, Ha PT, Cong TD, Advances in Natural Sciences, 7, 85 (2006)
  •  
  • 17. Diamond S, Concreate Res., 30, 1517 (2000)
  •  
  • 18. Kriwet B, Walter E, Kissel T, J. Control. Release, 56, 149 (1998)
  •  
  • 19. Park LS, Lee YH, Back TM, Hwang JJ, Polym.(Korea), 14(6), 583 (1990)
  •  
  • 20. An L, Wang AQ, Chen JM, J. Appl. Polym. Sci., 94(5), 1869 (2004)
  •  
  • 21. Lee KJ, Byun SH, Song JT, J. Korea Ceramic Society, 46, 657 (2009)
  •  
  • 22. Lu YQ, Miller JD, J. Colloid Interface Sci., 256(1), 41 (2002)
  •  
  • 23. Sindhu S, Valiyaveettil S, J. Polym. Sci. B: Polym. Phys., 42(24), 4459 (2004)
  •  
  • 24. Meth PK, Monteiro PJConcreat Microstructure, Properties, and Materials, 3rd edition, McGraw-Hill, NY. (2006)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2010; 34(5): 434-441

    Published online Sep 25, 2010

  • Received on Apr 13, 2010
  • Accepted on May 5, 2010