Article
  • Syntheses and Characterizations of Functionalized Graphenes and Reduced Graphene Oxide
  • Moon HG, Chang JH
  • 관능기화 그래핀 및 환원된 그래핀 옥사이드의 합성과 특성분석
  • 문현곤, 장진해
Abstract
Graphene oxide (GO) was prepared by the Hummers and Offeman method from graphite. Reduced graphene oxide (RGO) and functionalized graphenes were synthesized from GO by using hydrazine hydrate and amine-functionalized alkyl groups, respectively. The structures of the GO, RGO, and functionalized graphenes were identified by FTIR and 13C NMR. In addition, we examined the thermal stability, morphology, and dispersibility of the materials in various organic solvents. AFM disclosed that GO and RGO consisted of one- or two-layer graphene regions throughout the film. However, the functionalized graphene films showed average thicknesses of 2.26∼3.30 nm. The thermal stability of the functionalized graphenes was poorer than that of the RGO. The functionalized graphenes were well dispersed in toluene or chloroform, as evidenced by the lack of the characteristic graphite reflection in the solutions.

Hummers와 Offeman 방법을 이용하여 흑연으로부터 graphene oxide(GO)를 합성하였다. Hydrazine hydrate를 사용하여 GO를 환원시켜 reduced graphene oxide(RGO)를 합성하였으며, 말단에 amine이 치환된 유기화제를 사용하여 관능기화 그래핀을 합성하였다. 합성된 GO, RGO, 그리고 관능기화 그래핀의 구조를 확인하기 위하여 FTIR과 13C NMR를 이용하였다. 합성된 시료들의 열 안정성, 모폴로지 및 다양한 유기용매 내에서의 분산도를 각각 조사하였다. AFM 사진으로부터 GO와 RGO는 한층 또는 두층 두께의 그래핀으로 이루어졌으며, 관능기화 그래핀들의 평균 두께는 약 2.26∼3.30 nm임을 알았다. 관능기화 그래핀들의 열 안정성은 RGO보다 낮았다. 관능기화 그래핀들은 용액상태에서 흑연의 특성 피크가 관찰되지 않는 것으로 보아 클로로포름과 톨루엔에 좋은 분산성을 가지는 것으로 확인되었다.

Keywords: graphene; graphene oxide; functionalized graphene.

References
  • 1. Biscoe J, Warren BE, J. Appl. Phys., 13, 364 (1942)
  •  
  • 2. Dreyer DR, Park S, Bielawski CW, Ruoff RS, Chem. Soc. Rev., 39, 228 (2010)
  •  
  • 3. Dikin DA, Stankovich S, Zimney EJ, Pine RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS, Nature., 448, 457 (2007)
  •  
  • 4. Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS, ACS Nano., 2, 572 (2008)
  •  
  • 5. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y, ACS Nano., 2, 463 (2008)
  •  
  • 6. Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS, Nano Lett., 9, 1593 (2009)
  •  
  • 7. Yanga D, Velamakannia A, Bozoklub G, Park S, Stollera M, Pinera RD, Stankovichc S, Junga I, Fieldd DA, Ventrice CA, Ruoff RS, Carbon., 47, 145 (2009)
  •  
  • 8. Park S, An J, Piner RD, Jung I, Yang D, Velamakanni A, Nguyen ST, Ruoff RS, Chem. Mater., 20, 6592 (2008)
  •  
  • 9. Novoselov KS, Science., 306, 666 (2004)
  •  
  • 10. Novoselov KS, Proc. Natl Acad. Sci., 102, 10451 (2005)
  •  
  • 11. Novoselov KS, Nature., 438, 197 (2005)
  •  
  • 12. Zhang Y, Tan JW, Stormer KL, Kim P, Nature., 438, 201 (2005)
  •  
  • 13. Lee C, Wei X, Kysar JW, Hone J, Science., 321, 385 (2008)
  •  
  • 14. Stoller MD, Park S, Zhu Y, An J, Ruoff RS, Nano Lett., 8, 3498 (2008)
  •  
  • 15. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS, Nature., 442, 282 (2006)
  •  
  • 16. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud'homme RK, Car R, Saville DA, Aksay IA, J. Phys. Chem. B, 110(17), 8535 (2006)
  •  
  • 17. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH, Nature., 457, 706 (2009)
  •  
  • 18. Ansari S, Giannelis EP, J. Polym. Sci. B: Polym. Phys., 47(9), 888 (2009)
  •  
  • 19. Gao C, Vo CD, Jin YZ, Li WW, Armes SP, Macromolecules, 38(21), 8634 (2005)
  •  
  • 20. Kong H, Gao C, Yan DY, Macromolecules, 37(11), 4022 (2004)
  •  
  • 21. Sun YP, Huang W, Lin Y, Fu K, Kitaygorodskiy A, Riddle LA, Yu YJ, Carroll DL, Chem. Mater., 13, 2864 (2001)
  •  
  • 22. Hummers W, Offeman R, J. Am. Chem. Soc., 80, 1339 (1958)
  •  
  • 23. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon., 45, 1558 (2007)
  •  
  • 24. He HY, Riedl T, Lerf A, Klinowski J, J. Phys. Chem., 100(51), 19954 (1996)
  •  
  • 25. He H, Klinowski J, Forster M, Lerf A, Chem. Phys. Lett., 287, 53 (1998)
  •  
  • 26. Lerf A, He H, Riedl T, Forster M, Klinowski J, Solid State Ionics., 101, 857 (1997)
  •  
  • 27. Lerf A, He HY, Forster M, Klinowski J, J. Phys. Chem. B, 102(23), 4477 (1998)
  •  
  • 28. Neidlein R, Dao TV, Gieren A, Kokkinidis M, Wilckens R, Geserich HP, Chem. Ber., 115, 2898 (1982)
  •  
  • 29. Wharton PS, Bohlen DH, J. Org. Chem., 26, 3615 (1961)
  •  
  • 30. Zalan Z, Lazar L, Fueloep F, Curr. Org. Chem., 9, 357 (2005)
  •  
  • 31. Mueller RK, Felix D, Schreiber J, Eschenmoser A, HeIv. Chim. Acta., 53, 1479 (1970)
  •  
  • 32. Lahti PM, Tetrahedron Lett., 24, 2339 (1983)
  •  
  • 33. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Alonso MH, Milius DL, Car R, Prud’homme RK, Aksay IA, Chem. Mater., 19, 4396 (2007)
  •  
  • 34. Prud’homme RK, Aksay IA, Adamson D, Abdala A, Chem. Abstr., 146, 442670 (2007)
  •  
  • 35. Prud’homme RK, Ozbas B, Aksay IA, Register RA, Adamson D, Chem. Abstr., 148, 472932 (2008)
  •  
  • 36. Raghu AV, Lee YR, Jeong HM, Shin CM, Macromol. Chem. Phys., 209, 2487 (2008)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2011; 35(3): 265-271

    Published online May 25, 2011

  • Received on Jan 28, 2011
  • Accepted on Mar 14, 2011