Article
  • Effect of Functionalized Binary Silane Coupling Agents by Hydrolysis Reaction Rate on the Adhesion Properties of 2-Layer Flexible Copper Clad Laminate
  • Park U, Park JY, Kim JY, Kim YS, Ryu JH, Won JC
  • 이성분계 실란 커플링제의 가수분해속도 조절에 의한 2-FCCL의 접착특성 변화 연구
  • 박유주, 박진영, 김진영, 김용석, 류종호, 원종찬
Abstract
The parameters of silanol formation reaction of organosilane including solvent type, solution concentration, pH and hydrolysis time influence the adhesion property of 2 layer flexible copper clad laminate(FCCL). Especially, the hydrolysis reaction time of silane coupling agent affects the formation of the silanol groups and their self-condensation to generate oilgomeric structure to enhance the surface treatment as an adhesive promoter. In our study, we prepared the binary silane coupling agents to control hydrolysis reaction rate and surface energy after treatment of silane coupling agents for increasing the adhesive property between a copper layer and a polyimide layer. The surface morphology of rolled copper foil, as a function of the contents of the coated binary silane coupling agent, was fully characterized. As fabricated 2-layer FCCL, we observed that adhesive properties were changed by hydrolysis rate and surface energy.

실란 커플링제의 가수분해를 통한 실란올의 형성과 올리고머 구조형성을 하는 중합반응은 2-FCCL의 표면처리 과정에서 계면 사이의 접착력에 영향을 준다. 본 연구에서는 실란 커플링제의 가수분해반응 속도를 비교하고, 표면 처리 후 동박의 표면 에너지로 인한 접착특성의 변화를 확인하였다. 특히 이성분계 실란 커플링제는 가수분해 반응속도 조절이 가능하며, 동박과 폴리이미드 사이에서 접착 프로모터로서 확실한 접착력 향상을 보였다. 압연동박 표면에 처리한 이성분계 실란 커플링제의 함량 변화에 따라 접착력의 향상 정도가 다르게 나타났으며 반응속도 조절과 표면 에너지 평가를 통한 접착 특성을 분석하여 접착력을 최대화시켰다.

Keywords: 2-layer FCCL; adhesion; polyimide; binary silane coupling agent; hydrolysis rate.

References
  • 1. Barlow F, Lostetter A, Elshabini A, Microelectron. Reliab., 42, 1091 (2002)
  •  
  • 2. Jang J, Lee J, Ahn BH, Polym.(Korea), 21(4), 582 (1997)
  •  
  • 3. Tanoglu M, Mcknight SH, Palmese GR, Gillespie JW, Jr., Int. J. Adhes. Adhes., 18, 431 (1998)
  •  
  • 4. Alam TM, Assink RA, Loy DA, Chem. Mater., 8, 2366 (1996)
  •  
  • 5. Daniels MW, Francis LF, J. Colloid Interface Sci., 205(1), 191 (1998)
  •  
  • 6. Beari F, Brand M, Jenkner P, Lehnert R, Metternich HJ, Monkiewicz J, Siesler HW, J. Organomet. Chem., 625, 208 (2001)
  •  
  • 7. Naviroj S, Culler SR, Koenig JL, Ishida H, J. Colloid Interface Sci., 97, 308 (1984)
  •  
  • 8. Salon MCB, Abdelmouleh M, Boufi S, Belgacem MN, Gandini A, J. Colloid Interface Sci., 289(1), 249 (2005)
  •  
  • 9. Inagaki N, Tasaka S, Onodera A, J. Appl. Polym. Sci., 73(9), 1645 (1999)
  •  
  • 10. Jang J, Earmme T, Polymer, 42(7), 2871 (2001)
  •  
  • 11. Yuen SM, Ma CCM, Chiang CL, Teng CC, J. Nanomater., 786405 (2008)
  •  
  • 12. Park C, Lowther SE, Smith JG, Jr., Connell JW, Hergenrother PM, St. Clair TL, Int. J. Adhes. Adhes., 20, 457 (2000)
  •  
  • 13. Walker P, J. Adhesion Sci. Technol., 5, 279 (1991)
  •  
  • 14. Park JY, Lim JP, Kim YS, Jung HM, Lee JH, Ryu JH, Won JC, Polym.(Korea), 33(6), 525 (2009)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2011; 35(4): 302-307

    Published online Jul 25, 2011

  • Received on Dec 1, 2010
  • Accepted on Feb 22, 2011