Article
  • Fabrication and Characterization of Organic Thin-Film Transistors by Using Polymer Gate Electrode
  • Jang H, Song K, Kim SH
  • 고분자 게이트 전극을 이용한 유기박막 트랜지스터의 제조 및 소자성능에 관한 연구
  • 장현석, 송기국, 김성현
Abstract
A conductive PANI solution was successfully fabricated by doping with camphorsulfonic acid and the polymerization of aniline and the confirmation of doping were characterized by FTIR spectroscopy. In organic thin film transistors, PANI gate electrodes were spin-coated on a PES substrate and their conductivity variations were monitored by a 4-probe method with different annealing temperatures. The surface properties of PANI thin films were investigated by an AFM and an optical microscope. OTFTs with PANI gate electrode had characteristics of carrier mobility as large as 0.15 cm2/Vs and on/off ratio of 2.4×106. Au gate OTFTs with the same configuration were fabricated to investigate the effect of polymer gate electrode for the comparison of device performances. We could obtain the comparable performances of PANI devices to those of Au gate devices, resulting in an excellent alternative as an electrode in flexible OTFTs instead of an expensive Au electrode.

폴리아닐린(polyaniline, PANI) 전도성 고분자 용액을 camphorsulfonic acid(CSA)로 도핑하여 제조하였고, FTIR을 이용하여 고분자 중합 및 도핑유무를 확인하였다. 제조된 폴리아닐린을 스핀 코팅하여 유기박막 트랜지스터의 게이트 전극으로 사용하였으며, 열처리 온도변화에 따른 전기 전도도 변화를 4-probe measurement로 확인하였다. 또한 표면 특성을 이해하기 위해 atomic force microscope(AFM)와 optical microscope를 이용하였다. 폴리아닐린 게이트전극을 활용하여 얻은 유기박막 트랜지스터의 소자성능은 최고 이동도가 0.15 cm2/Vs, 전류점멸비가 2.4×106 임을 확인하였다. 고분자 전극의 소자특성을 비교분석하기 위해, 같은 구조의 Au 전극소자를 제작하였다. Au 금속전 극소자와 유사한 성능을 보인 폴리아닐린 게이트 전극 소자는 플렉서블 유기박막 트랜지스터 전극으로 충분히 사용될 수 있다.

Keywords: conducting polymer; polyaniline; polymer gate electrode; organic thin film transistors.

References
  • 1. Ebisawa F, Kurokawa T, Nara S, J. Appl. Phys., 54, 3255 (1983)
  •  
  • 2. Kudo K, Yamashina M, Moriizumi T, Jpn. J. Appl. Phys., 23, 130 (1984)
  •  
  • 3. Tsumura A, Koezuka H, Ando T, Appl. Phys. Lett., 49, 1210 (1986)
  •  
  • 4. Dodabalapor A, Bao Z, Makhija A, Laquindanumm JG, Raju VR, Feng Y, Katz HE, Rogers J, Appl. Phys. Lett., 73, 142 (1998)
  •  
  • 5. Lee MY, Bae KE, Kim SH, Lim SC, Nam SY, Polym.(Korea), 33(5), 397 (2009)
  •  
  • 6. Kulkarni AP, Kong XX, Jenekhe SA, Adv. Funct. Mater., 16(8), 1057 (2006)
  •  
  • 7. Kim C, Facchetti A, Marks TJ, J. Am. Chem. Soc., 131(25), 9122 (2009)
  •  
  • 8. Kim C, Facchetti A, Marks TJ, Adv. Mater., 19(18), 2561 (2007)
  •  
  • 9. Kim C, Facchetti A, Marks TJ, Science., 318, 76 (2007)
  •  
  • 10. Schrodner M, Sensfuss S, Roth HK, Stohn RJ, Clements W, Bernds A, 88 IEEE Polytronic 2002 Conference, 1 (2002)
  •  
  • 11. Ameen S, Akhtar MS, Kim YS, Yang OB, Shin HS, J. Phys. Chem. C., 114, 4760 (2010)
  •  
  • 12. Li Q, Wu J, Tang Q, Lan Z, Li P, Lin J, Fan L, Electrochem. Commun., 10, 1299 (2008)
  •  
  • 13. Li D, Guo LJ, Appl. Phys. Lett., 88, 063513 (2006)
  •  
  • 14. Hong K, Yang SY, Yang C, Kim SH, Choi D, Park CE, Org. Electron., 9, 864 (2008)
  •  
  • 15. Lee K, Cho S, Park SH, Heeger AJ, Lee CW, Lee SH, Nature., 441, 65 (2006)
  •  
  • 16. Tang J, Jing X, Wang B, Wang F, Synthetic Metals., 24, 231 (1988)
  •  
  • 17. Ouyang BY, Chi CW, Chen FC, Xi QF, Yang Y, Adv. Funct. Mater., 15(2), 203 (2005)
  •  
  • 18. Lee KS, Blanchet GB, Gao F, Loo Y, Appl. Phys. Lett., 86, 074102 (2005)
  •  
  • 19. Gundlach DJ, Lin YY, Jackson TN, Nelson SF, Schlom DG, IEEE Electron Device Lett., 18, 87 (1997)
  •  
  • 20. Halik M, Klauk H, Zschieschang U, Kriem T, Schnid G, Ralik W, Wussow K, Appl. Phys. Lett., 81, 289 (2002)
  •  
  • 21. Shibata K, Wada H, Ishikawa K, Takezoe H, Appl. Phys. Lett., 90, 193509 (2007)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2011; 35(4): 370-374

    Published online Jul 25, 2011

  • Received on Mar 15, 2011
  • Accepted on Jun 24, 2011