• Fracture Behavior of Polycarbonate/Polyestercarbonate Blends
  • Lee YB, Lee CS, Kim DS, Kim JH, Jho JY, Lee SS
  • 폴리카보네이트/폴리에스터카보네이트 블렌드의 파괴 거동
  • 이용범, 이춘수, 김대식, 김종현, 조재영, 이상수
Abstract
Fracture behaviors of polycarbonate (PC)/polyestrercarbonate (PEC) blends and their miscibility have been examined to find out the mechanism of ductilie-brittle transition of fracture behavior which would be a main governing factor on the thickness sensitivity of impact strength of PC. Tg measurement showed that PEC with a carbonate content higher than 30 mol% was miscible with PC. In the notched Izod impact test of PC, ductile-brittle transition occurred in the range of 4 to 5 mm thickness. The impact strength of miscible PC/PEC5 blends ductile-fractured in the thin specimens decreased with increasing PEC5 content, which was in accordance with the decrease of elongation at break in tensile test. In the brittle fracture of the thick specimens, the impact strength was well correlated with the plastic zone size in the vicinity of the notch tip.

폴리카보네이트(PC)에서 문제되는, 내충격성에서의 취약한 두께민감성을 보완하고자, PC와 구조적 유사성을 지니며 내충격성에서의 두께민감성은 보완된 폴리에스터카보네이트(PEC)와 PC의 블렌드를 제조하였다. 다양한 조성의 PEC를 합성하여 PC/PEC 블렌드의 Tg를 측정한 결과, 카보네이트 구조의 함량이 10 mol% 정도로 적은 경우를 제외한 모든 PEC가 PC와 상용성을 보였으며, 그 중 카보네이트 단위와 방향족 에스터인 아릴레이트 단위의 함량비가 1:1인 PEC5와 PC의 블렌드에 대해 파괴 거동을 고찰한 결과, 3 mm 두께 시편에서는 PEC5의 함량이 증가함에 따라 충격강도가 낮아졌으나, 이보다 두꺼운 6 mm 시편에서는 PEC5 함량이 많은 조성에서 PC와 PEC5 각각 보다 향상된 충격강도 결과가 발견되었다.

Keywords: polycarbonate; polyestercarbonate; blend; thickness sensitivity; ductile-brittle transition.

References
  • 1. Chang FC, Chu LH, J. Appl. Polym. Sci., 44, 1615 (1992)
  •  
  • 2. Chang FC, Wu JS, Chu LH, J. Appl. Polym. Sci., 44, 491 (1992)
  •  
  • 3. LeGrand DG, J. Appl. Polym. Sci., 13, 2129 (1969)
  •  
  • 4. Cheng TW, Keskkula H, Paul DR, J. Appl. Polym. Sci., 45, 531 (1992)
  •  
  • 5. Allen G, Morley DCW, Williams T, J. Mater. Sci., 8, 1449 (1973)
  •  
  • 6. So P, Broutman LJ, Polym. Eng. Sci., 16, 785 (1976)
  •  
  • 7. Progelhof RC, Throne JL, Polymer Engineering Principles.Carl Hanser Verlag, New York, 583 (1993)
  •  
  • 8. Hull D, Owen TW, J. Polym. Sci.: Polym. Phys. Ed., 11, 2039 (1973)
  •  
  • 9. Mills NJ, J. Mater. Sci., 11, 363 (1976)
  •  
  • 10. Yee AF, Li D, Li X, J. Mater. Sci., 28, 6392 (1993)
  •  
  • 11. Markezich RL, Quinn CB, U.S. Patent 4,238,597 (1980)
  •  
  • 12. Swart DJ, Kelyman JS, U.S. Patent 4,278,787 (1981)
  •  
  • 13. Belfoure EL, Miller KF, U.S. Patent 4,469,850 (1984)
  •  
  • 14. Bubeck A, Bales SE, Lee HD, Polym. Eng. Sci., 24, 1142 (1984)
  •  
  • 15. Byrne JB, U.S. Patent 4,710,548 (1987)
  •  
  • 16. Domininghaus H, Plastics for Engineers, Hanser, New York, 437 (1993)
  •  
  • 17. Prevorsek DC, Debona BT, Kesten Y, J. Polym. Sci.: Polym. Phys. Ed., 18, 75 (1980)
  •  
  • 18. Lee SS, Ph. D. Thesis, Seoul National University (1995)
  •  
  • 19. Bosnyak CP, Parsons IW, Hay JN, Haward RN, Polymer., 21, 1448 (1980)
  •  
  • 20. Bosnyak CP, Hay JN, Parsons IW, Haward RN, Polymer., 23, 609 (1982)
  •  
  • 21. Mondragon I, Nazabal J, J. Appl. Polym. Sci., 32, 6191 (1986)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2011; 35(6): 537-542

    Published online Nov 25, 2011

  • Received on Apr 5, 2011
  • Accepted on May 16, 2011