Article
  • Characteristic Change of PVDF-SiO2 Composite Nanofibers with Different Thermal Treatment Temperature
  • Kim YJ
  • 열처리 온도에 따른 PVDF-SiO2 복합나노섬유의 특성 변화
  • 김영진
Abstract
Composite nanofibers were prepared by electrospinning and thermal treatment from poly (vinylidene fluoride) (PVDF)-SiO2 blend solution. The nanofibers were stacked on layers to produce fully interconnected pores. TEM micrographs and EDX spectra confirmed the presence of SiO2 in the composite nanofibers. The porosity of nanofibers was effectively enhanced by the introduction of electrospinning technique. ATR-FTIR and XRD results revealed that PVDF in the composite nanofibers exhibited the mixture crystal structure of α-phase and β-phase. The crystal structure of α-phase and crystallinity increased by the thermal treatment. In addition, the mechanical properties, thermal stability and hydrophobicity were markedly amplified by the thermal treatment.

전기방사법과 열처리 공정을 통하여 PVDF-SiO2 복합나노섬유를 제조하였으며, 얻어진 나노섬유는 서로 연결된 기공으로 이루어진 적층 구조를 하고 있었다. 즉, 전기방사로 제조된 나노섬유는 직경이 380 nm, 기공도가 80% 이상인 다공성막을 형성하였다. TEM 사진과 EDX 스펙트라의 분석 결과로부터 SiO2가 나노섬유에 균일하게 분산되어 존재한다는 것이 확인되었다. 또한 전기방사법의 도입에 의해 나노섬유의 기공도가 현저히 개선되었다. ATR-FTIR 및 XRD 분석 결과 복합나노섬유 상에서 PVDF는 α-phase와 β-phase가 혼재되어 있는 결정구조를 가지고 있었으며, 열처리에 의해서 PVDF의 α-phase가 증가하였으며, 이로 인해 결정화도가 증가하였다. 특히, 기계적 강도, 열적 특성 및 소수성은 열처리 공정에 의해서 매우 증가되는 것을 확인할 수 있었다.

Keywords: PVDF; silica; organic-inorganic composite; nanofiber; thermal treatment.

References
  • 1. Dohany JE, Robb LE, “Polyvinylidene fluoride”, in Kirk-Othmer Encyclopedia of Chemical Technology, Kirk RE, Othmer DF, Editors, Wiley, New York, 11 (1980)
  •  
  • 2. Sukitpaneenit P, Chung TS, J. Membr. Sci., 340(1-2), 192 (2009)
  •  
  • 3. Al-Obaidani S, Curcio E, Macedonio F, Di Profio G, Ai-Hinai H, Drioli E, J. Membr. Sci., 323(1), 85 (2008)
  •  
  • 4. Choi SW, Jo SM, Lee WS, Kim YR, Adv. Mater., 15(23), 2027 (2003)
  •  
  • 5. Elashmawi IS, Mater. Chem. Phys., 107(1), 96 (2008)
  •  
  • 6. Li X, Wang Y, Lu X, Xiao C, J. Membr. Sci., 320, 447 (2008)
  •  
  • 7. Akthakul A, McDonald WF, Mayes AM, J. Membr. Sci., 208(1-2), 147 (2002)
  •  
  • 8. Feng CS, Shi BL, Li GM, Wu YL, J. Membr. Sci., 237(1-2), 15 (2004)
  •  
  • 9. El-Bourawi MS, Ding Z, Ma R, Khayet M, J. Membr. Sci., 285(1-2), 4 (2006)
  •  
  • 10. Ma Z, Kotaki M, Yong T, He W, Ramakrishna S, Biomaterials., 26, 2527 (2005)
  •  
  • 11. Li L, Bellan LM, Craighead HG, Frey MW, Polymer, 47(17), 6208 (2006)
  •  
  • 12. Kim YJ, Ahn CH, Choi MK, Eur. Polym. J., 46, 1957 (2010)
  •  
  • 13. Chae WP, Xing ZC, Kim YJ, Sang HS, Huh MW, Kang IK, Polym.(Korea), 35(3), 210 (2011)
  •  
  • 14. Guizard C, Bac A, Barboiu M, Hovnanian N, Sep. Purif. Technol., 25(1-3), 167 (2001)
  •  
  • 15. Taniguchi A, Cakmak M, Polymer, 45(19), 6647 (2004)
  •  
  • 16. Yu LY, Xu ZL, Shen HM, Yang H, J. Membr. Sci., 337(1-2), 257 (2009)
  •  
  • 17. Rahimpour A, Madaeni SS, Zereshki S, Mansourpanah Y, Appl. Surf. Sci., 255(16), 7455 (2009)
  •  
  • 18. Yu LY, Xu ZL, Shen HM, Yang H, J. Membr. Sci., 337(1-2), 257 (2009)
  •  
  • 19. Nasir M, Matsumoto H, Danno T, Minagawa M, Irisawa T, Shioya M, Tanioka A, J. Polym. Sci. B: Polym. Phys., 44(5), 779 (2006)
  •  
  • 20. Kim JW, Cho WJ, Ha CS, J. Polym. Sci. B: Polym. Phys., 40(1), 19 (2002)
  •  
  • 21. Peng QY, Cong PH, Liu XJ, Liu TX, Huang SH, Li TS, Wear., 266, 713 (2009)
  •  
  • 22. Raghavan P, Zhao XH, Kim JK, Manuel J, Chauhan GS, Ahn JH, Nah C, Electrochim. Acta, 54(2), 228 (2008)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2011; 35(6): 605-609

    Published online Nov 25, 2011

  • Received on Jul 5, 2011
  • Accepted on Aug 11, 2011