Article
  • In situ Microfluidic Method for the Generation of Monodisperse Double Emulsions
  • Hwang S, Choi CH, Kim HC, Kim IH, Lee CS
  • 미세유체를 이용한 단분산성 이중 에멀젼 생성 방법
  • 황소라, 최창형, 김휘찬, 김인호, 이창수
Abstract
This study presents the preparation of double emulsions in a poly(dimethylsiloxane) (PDMS)-based microfluidic device. To improve the wettability of hydrophilic continuous phase onto a hydrophobic PDMS microchannel, the surface was modified with 3-(trimethoxysilyl) propyl methacrylate (TPM) and then sequentially reacted with acrylic acid monomer solution, which produced selective covalent bonding between acrylic acids and methacrylate groups. For the proof of selective surface modification, tolonium chloride solution was used to identify the modified region and we confirmed that the approach was successfully performed. When water containing 0.5% w/w sodium dodecyl sulfate and 1% w/w Span80 with hexadecane were loaded into the selectively modified microfluidic channels, we can produce stable double emulsion. Based on the spreading coefficients, we predict the morphology of double emulsions. Our proposed method efficiently produces monodisperse double emulsions having 48.5 μm (CV:1.6%) core and 65.1 μm (CV:1.6%) shell. Furthermore, the multiple emulsions having different numbers of core were easily prepared by simple control of flow rates.

본 연구에서는 poly(dimethylsiloxane)(PDMS) 기반의 미세유체 시스템을 이용하여 이중 에멀젼을 형성하는 방법을 구현하였다. 반응기 친수성 연속상과 표면 젖음성을 향상시키기 위해 우선 PDMS 표면과 3-(trimethoxysilyl) propyl methacrylate(TPM)간의 졸-젤 반응을 통해 표면에 메타크릴레이트를 유도하였고, 선택적인 영역에 친수성 단량체인 아크릴산과 메타크릴레이트간의 공유결합을 유도하였다. 이를 확인하기 위해 아크릴산과 정전기적 인력 결합을 하는 염료를 통하여 선택적 표면 개질의 성공을 확인하였다. 사용된 유체로는 "spreading coefficient"를 도입하여 시스템 내에서 이중 에멀젼을 형성하는 조건을 예측하여 물과 0.5% w/w sodium dodecyl sulfate 혼합물, 헥사데칸 혼합물(hexadecane; 1% w/w Span80)을 선정하였다. 이를 통하여, 코어 및 쉘의 사이즈가 48.5 μm(CV:1.6%), 65.1 μm(CV:1.6%)인 단분산성 이중 에멀젼을 성공적으로 생성하였고, 유체의 유량 제어를 통하여 함입되는 코어의 개수 조절이 가능함을 보여주었다.

Keywords: microfluidics; surface modification; monodisperse; double emulsion; multiple emulsion.

References
  • 1. Nisisako T, Chem. Eng. Technol., 31(8), 1091 (2008)
  •  
  • 2. Sun BJ, Shum HC, Holtze C, Weitz DA, ACS Appl. Mater. Inter., 2, 3411 (2010)
  •  
  • 3. Abate AR, Weitz DA, Small., 5, 2030 (2009)
  •  
  • 4. Bhattacharya S, Datta A, Berg JM, Gangopadhyay S, J. Microelectromech. Syst., 14, 590 (2005)
  •  
  • 5. OWEN MJ, SMITH PJ, J. Adhes. Sci. Technol., 8(10), 1063 (1994)
  •  
  • 6. Hu S, Ren X, Bachman M, Sims CE, Li GP, Allbritton NL, Anal. Chem., 76, 1865 (2004)
  •  
  • 7. Fidalgo LM, Abell C, Huck WTS, Lab Chip., 7, 984 (2007)
  •  
  • 8. Schneider MH, Tran Y, Tabeling P, Langmuir, 27(3), 1232 (2011)
  •  
  • 9. Bauer WC, Fischlechner M, Abell C, Huck WTS, Lab Chip., 10, 1814 (2010)
  •  
  • 10. Decher G, Hong JD, Schmitt J, Thin Solid Films., 201, 831 (1992)
  •  
  • 11. Abate AR, Krummel AT, Lee D, Marquez M, Holtze C, Weitz DA, Lab Chip., 8, 2157 (2008)
  •  
  • 12. Abate AR, Lee D, Do T, Holtze C, Weitz DA, Lab Chip., 8, 516 (2008)
  •  
  • 13. Choi C, Yi H, Hwang S, Weitz DA, Lee C, Lab Chip., 11, 1477 (2011)
  •  
  • 14. Schneider MH, Willaime H, Tran Y, Rezgui F, Tabeling P, Anal. Chem., 82, 8848 (2010)
  •  
  • 15. Uchida E, Uyama Y, Ikada Y, Langmuir., 9, 1121 (1993)
  •  
  • 16. Kang ET, Tan KL, Kato K, Uyama Y, Ikada Y, Macromolecules, 29(21), 6872 (1996)
  •  
  • 17. Lee MH, Prasad V, Lee D, Langmuir, 26(4), 2227 (2010)
  •  
  • 18. Hotrum NE, Stuart MAC, Vliet TV, Avino SF, Aken GAV, Colloid Surf. A., 260, 71 (2005)
  •  
  • 19. Foster T, Dorfman KD, Davis HT, Langmuir, 26(12), 9666 (2010)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2012; 36(2): 177-181

    Published online Mar 25, 2012

  • Received on Jul 7, 2011
  • Accepted on Aug 10, 2011