Article
  • Thiazole Type Accelerator Effects on Silane/Silica Filled Natural Rubber Compound upon Vulcanization and Mechanical Properties
  • Kim SM, Kim KJ
  • Thiazole계 가황촉진제가 실란/실리카 충전 천연고무 컴파운드의 가황 거동 및 기계적 물성에 미치는 영향
  • 김성민, 김광제
Abstract
A thiazole type accelerator MBT (2-mercapto benzothiazole) was added into silica filled natural rubber (NR) compound with various concentrations (0, 1, 2, 3, 4 phr). The effects of MBT on the cure rate, mechanical property, degree of rubber-filler interaction (αF), crosslinking density, and viscoelastic property (tanδ) were investigated. As accelerator concentration increased, the ts2 and t90 decreased and the crosslinking density and modulus at 300% elongation increased. The tensile strength and elongation increased up to 3 phr and no further increased at 4 phr. The tan δ value measured at room temperature was higher than that of the 70 ℃. The αF value was not affected by the addition of MBT. The mechanisms for the vulcanization rate were reviewed.

본 연구에서는 thiazole 계 촉진제인 2-mercapto benzothiazole(MBT)의 첨가량을 변화시켜(0, 1, 2, 3, 4 phr) 실란/실리카로 충전된 천연고무 컴파운드에 첨가하여 가황속도, 물성, 고무-충전제간 상호작용계수(αF), 가교밀도 및탄젠트 델타(tanδ)에 미치는 영향을 비교 평가하였다. 촉진제의 첨가량이 증가할수록 ts2, t90 가황시간은 빨라졌고 가교 밀도 및 300% 모듈러스는 증가하였다. 인장강도와 신장률 또한 증가하였으나 3 phr에서는 더 이상의 증가가 없었다. 그리고 상온에서의 tanδ 값은 70 ℃에서보다 높은 값을 나타내었다. 촉진제의 함량변화는 천연고무-실란/실리카간 상호관계(αF)에 큰 영향을 미치지 않는 것으로 관찰되었다. 가황속도에 미치는 메카니즘을 고찰하였다.

Keywords: 2-mercapto benzothiazole(MBT); silica/natural rubber; cure rate; mechanical properties; vulcanization mechanism.

References
  • 1. Goodyear C, U. S. Patent 3, 633 (1844)
  •  
  • 2. Oenslager G, Ind. Eng. Chem., 23, 232 (1933)
  •  
  • 3. Bateman L, Moore CG, Porter M, Saville B, in The Chemistry and Physics of Rubber like Substances, Bateman L, Editor, John Wiley and Sons, New York, Chapter, 19 (1963)
  •  
  • 4. Bedford CW, U. S. Patent 1,371,662 (1921)
  •  
  • 5. Sebrell LB, Bedford CW, U. S. Patent 1,544,687 (1925)
  •  
  • 6. Bruni G, Romani E, Indian Rubber Journal., 62, 18 (1921)
  •  
  • 7. Zaucker E, M. Bogemann, and L. Orthner, U. S. Patent 1,942,790 (1934)
  •  
  • 8. Andrew C, An Introduction to Rubber Technology, 2nd ed., Smithers Rapra Technology, Shawbury (1999)
  •  
  • 9. Loadman MJR, William CW, Analysis of Rubber and Rubber-like Polymers, Kluwer Acadamic Publishers, Norwell (1998)
  •  
  • 10. Lorenz O, Echte E, Rubber Chem. Technol., 31, 117 (1958)
  •  
  • 11. Scheele W, Cherubim M, Rubber Chem. Technol., 34, 606 (1961)
  •  
  • 12. Morita E, Young EJ, Rubber Chem. Technol., 36, 844 (1963)
  •  
  • 13. Bhatnagar SK, Banerjee S, Rubber Chem. Technol., 42, 1366 (1969)
  •  
  • 14. White JL, Kim KJ, Thermoplastic and Rubber Compounds, Hanser, Munich (2008)
  •  
  • 15. Wagner MP, Rubber Chem. Technol., 49, 703 (1976)
  •  
  • 16. Wolff S, Kautsch. Gummi Kunstst., 34, 280 (1981)
  •  
  • 17. Wolff S, Rubber Chem. Technol., 55, 967 (1982)
  •  
  • 18. Plueddemann EP, Silane Coupling Agents, Plenum Press, New York (1982)
  •  
  • 19. Kim KJ, VanderKooi J, Kautsch. Gummi Kunstst., 55, 518 (2002)
  •  
  • 20. Gupta RK, Kennal E, Kim KJ, Polymer Nanocomposites Handbook, CRC Press, Boca Raton (2009)
  •  
  • 21. Kim KJ, White JL, J. Ind. Eng. Chem., 7(1), 50 (2001)
  •  
  • 22. Kim KJ, Carbon Lett., 10, 109 (2009)
  •  
  • 23. Kim KJ, VanderKooi J, J. Ind. Eng. Chem., 10(5), 772 (2004)
  •  
  • 24. Kim KJ, VanderKooi J, Rubber Chem. Technol., 78, 84 (2005)
  •  
  • 25. Kim SM, Nam CS, Kim KJ, Appl. Chem. Eng., 22(2), 144 (2011)
  •  
  • 26. Coran AY, in Science and Technology of Rubber, 3rd ed., Mark JE, Erman B, Eirich FR, Editors, Academic Press, New York, Chapter 7 (2005)
  •  
  • 27. Wolff S, Rubber Chem. Technol., 69, 325 (1996)
  •  
  • 28. FloryPJ, Rehner J, Chem. Phys., 11, 521 (1943)
  •  
  • 29. Sheelan CJ, Basio AL, Rubber Chem. Technol., 39, 149 (1966)
  •  
  • 30. Payne AR, Rubber Plast. Age., 42, 963 (1961)
  •  
  • 31. Gent AN, Engineering with Rubber: How to Design Rubber Components, 2nd ed., Hanser, Munich (2001)
  •  
  • 32. Chapman AV, Porter M, in Natural Rubber Science and Technology, Roberts AD, Editor, Oxford University Press, Oxford (1988)
  •  
  • 33. Coleman MM, Shelton JR, Koening JK, Rubber Chem. Technol., 46, 938 (1973)
  •  
  • 34. Coran AY, Rubber Chem. Technol., 37, 679 (1964)
  •  
  • 35. Gradwell MH, Mcgill WJ, J. Appl. Polym. Sci., 58(12), 2193 (1995)
  •  
  • 36. Kruger FWH, McGill WJ, J. Appl. Polym. Sci., 42, 2643 (1991)
  •  
  • 37. Ghosh P, Katare S, Patkar P, Caruthers JM, Venkatasubramanian V, Rubber Chem. Technol., 76, 592 (2003)
  •  
  • 38. Gradwell MH, Mcgill WJ, J. Appl. Polym. Sci., 51(1), 169 (1994)
  •  
  • 39. Guryanova EN, Q. Rep. Sulfur. Chem., 5, 113 (1970)
  •  
  • 40. Lamar F, in Organic Chemistry of Sulfur, Oae S, Editor, Plenum Press, New York (1977)
  •  
  • 41. Nieuwenhuizen PJ, Ehlers AW, Hofstraat JW, Janse SR, Nielen MWF, Reedijik J, Baerends EJ, Chem.-Eur. J., 4, 1816 (1998)
  •  
  • 42. Morrison NJ, Porter M, Rubber Chem. Technol., 57, 63 (1984)
  •  
  • 43. Moore CG, Trego BR, J. Appl. Polym. Sci., 8, 1957 (1964)
  •  
  • 44. Layer RB, Rubber Chem. Technol., 65, 211 (1992)
  •  
  • 45. Layer RB, Rubber Chem. Technol., 65, 822 (1992)
  •  
  • 46. Andreis M, Liu J, Koenig JL, J. Appl. Polym. Sci., Polym. Phys. Ed., 27, 1389 (1989)
  •  
  • 47. Choi C, Kim SM, Park YH, Jang MK, Nah JW, Kim KJ, Appl. Chem. Eng., 22(4), 411 (2011)
  •  
  • 48. Kim SM, Kim KJ, Korean Society of Industrial and Engineering Chemistry Spring Meeting, ICC JEJU, Jeju, Korea, May (2012)
  •  
  • 49. Kim SM, Kim KJ, Korean Institute of Rubber Industry Spring Meeting, University of Suwon, Korea, March (2012)
  •  
  • 50. Kim SM, Kim KJ, Adv. Polym. Tech., submitted (2012)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2012; 36(2): 235-244

    Published online Mar 25, 2012

  • Received on Sep 1, 2011
  • Accepted on Oct 19, 2011