Article
  • Effects of Oxyfluorinated Graphene Oxide Flake on Mechanical Properties of PMMA Artificial Marbles
  • Kim HC, Jeon S, Kim HI, Lee YS, Hong MH, Choi KS
  • 함산소불소화 처리된 그래핀 산화물 플레이크가 PMMA 인조대리석의 기계적 물성에 미치는 영향
  • 김효철, 전소녀, 김형일, 이영석, 홍민혁, 최기섭
Abstract
The nanocomposites containing graphene oxide flakes were prepared in order to improve the mechanical properties of artificial marbles based on poly(methyl methacrylate)(PMMA) matrix. Graphene oxide flakes were prepared from graphite by oxidation with Hummers method followed by exfoliation with thermal treatment. Surface of graphene oxide flakes were modified with oxyfluorination in various oxygene:fluorine compositions to improve the interfacial compatibility. The nanocomposites containing graphenes modified with oxyfluorination in the oxygen content of 50% and higher showed the significant increase in flexural strength, flexural modulus, Rockwell hardness, Barcol hardness, and Izod impact strength. The morphology of fractured surface showed the improved interfacial adhesion between PMMA matrix and the graphenes which were properly treated with oxyfluorination. The mechanical properties of nanocomposite were deteriorated by increasing the content of graphene above 0.07 phr due to the nonuniform dispersion of graphenes.

폴리(메틸메타크릴레이트)(PMMA) 매트릭스를 갖는 인조대리석의 기계적 강도를 향상시키기 위해 그래핀 산화물 플레이크(GOF)를 충전제로 사용하여 나노컴포지트를 제조하였다. 충전제로 사용한 GOF는 흑연을 Hummers법으로 산화한 후 열처리에 의해 박리시켜 제조하였다. PMMA 매트릭스와의 계면혼화성을 향상시키기 위하여 다양한 산소:불소 조성의 함산소불소화 처리로 GOF 계면을 개질시켰다. 산소함량 50% 이상에서 함산소불소화 처리한 GOF를 충전제로 사용한 나노컴포지트는 기존 인조대리석에 비해 굴곡강도, 굴곡탄성률, Rockwell경도, Barcol경도, Izod충격강도 모두 현저히 증가하였다. 적절히 함산소불소화 처리된 GOF는 PMMA 매트릭스와의 계면접착력이 우수함을 파단면의 모폴로지로부터 확인하였다. 하지만 GOF 충전제의 함량이 0.07phr 이상으로 증가하면 충전제의 분산이 균일하지 못하여 인조대리석의 기계적 강도는 오히려 감소하는 경향을 나타내었다.

Keywords: PMMA; graphene oxide flake; oxyfluorination; mechanical property; artificial marbles.

References
  • 1. Horn MB, Acrylic Resins, Reinhold Publishing Co., New York (1960)
  •  
  • 2. Riddle H, Monomeric Acrylic Esters, Reinhold Publishing Co., New York (1954)
  •  
  • 3. Coyard H, Deligny P, Tuck N, Oldring P, Resins for Surface Coatings: Acrylics and Epoxies, 2nd ed., John Wiley & Sons, New York (2001)
  •  
  • 4. Kim SD, Kim JW, Im JS, Kim YH, Lee YS, J.Fluorine Chem., 128, 60 (2007)
  •  
  • 5. Lee YS, J. Fluorine Chem., 128, 392 (2007)
  •  
  • 6. Geim AK, Novoselov KS, Nat. Mater., 6, 183 (2007)
  •  
  • 7. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science., 306, 666 (2004)
  •  
  • 8. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson M, Grigorieva IV, Dubonos SV, Firsov AA, Nature., 438, 197 (2005)
  •  
  • 9. Zhang YB, Tan YW, Stormer HL, Kim P, Nature., 438, 201 (2005)
  •  
  • 10. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, Heer WA, Science., 312, 1191 (2006)
  •  
  • 11. Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K, Nano Lett., 7, 3499 (2007)
  •  
  • 12. Tan YW, Zhang YB, Stormer HL, Kim P, Eur.Phys. J., 148, 15 (2007)
  •  
  • 13. Han JH, Cho KW, Lee KH, Kim H, Carbon., 36, 1801 (1998)
  •  
  • 14. Ericson LM, Fan H, Peng H, Davis VA, Zhou W, Sulpizio J, Wang Y, Booker R, Vavro J, Guthy C, Parra-Vasquez ANG, Kim MJ, Ramesh S, Saini RK, Kittrell C, Lavin G, Schmidt H, Adams WW, Billups WE, Pasquali M, Hwang WF, Hauge RH, Fischer JE, Smalley RE, Science., 305, 1447 (2004)
  •  
  • 15. Hummers W, Offeman R, J. Am. Chem. Soc., 80, 1339 (1958)
  •  
  • 16. Wang G, Shen X, Yao J, Park J, Carbon., 47, 2049 (2009)
  •  
  • 17. Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H, Nat. Nanotechnol., 3, 538 (2008)
  •  
  • 18. Yun SM, Woo SW, Jeong E, Bai BC, Park IJ, Lee YS, Appl. Chem. Eng., 21(3), 343 (2010)
  •  
  • 19. Bang YG, Choi KS, Park CH, Korea Patent 0915122 (2009)
  •  
  • 20. Bang YG, Choi KS, Park CH, Korea Patent 0915129 (2009)
  •  
  • 21. Geng Y, Wang SJ, Kim JK, J. Colloid Interface Sci., 336(2), 592 (2009)
  •  
  • 22. Shen JF, Li N, Shi M, Hu YZ, Ye MX, J. Colloid Interface Sci., 348(2), 377 (2010)
  •  
  • 23. Barton SS, J. Colloid Interface Sci., 179(2), 449 (1996)
  •  
  • 24. Bissessur R, Liu PKY, Scully SF, Synth. Met., 156, 1023 (2006)
  •  
  • 25. Nakajima T, Mabuchi A, Hagiwara R, Carbon., 26, 357 (1988)
  •  
  • 26. Maultzsch J, Reich S, Thomsen C, Requardt H, Ordejon P, Phys. Rev. Lett., 92, 075501 (2004)
  •  
  • 27. Yoon D, Moon H, Cheong H, Choi JS, Choi JA, Park BH, J. Korean Phys. Soc., 55, 1299 (2009)
  •  
  • 28. Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK, Rev. Modern Phys., 81, 109 (2009)
  •  
  • 29. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK, Phys. Rev. Lett., 97, 187401 (2006)
  •  
  • 30. Malard LM, Guimaraes MHD, Mafra DL, Mazzoni MSC, Jorio A, Phys. Rev. B., 79, 125426 (2009)
  •  
  • 31. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon., 45, 1558 (2007)
  •  
  • 32. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS, J. Mater. Chem., 16, 155 (2006)
  •  
  • 33. Hontoria-Lucas C, Lopez-Peinado AJ, Lopez-Gonzalez J, Rojas-Cervantes ML, Martin-Aranda RM, Carbon., 33, 1585 (1995)
  •  
  • 34. Chiang T, Seitz F, Ann. Phys., 10, 61 (2001)
  •  
  • 35. Yumitori S, J. Mater. Sci., 35(1), 139 (2000)
  •  
  • 36. Park SJ, Song SY, Shin JS, Rhee JM, J. Colloid Interface Sci., 283(1), 190 (2005)
  •  
  • 37. Chamssedine F, Claves D, Carbon., 46, 957 (2008)
  •  
  • 38. Kozlowski C, Sherwood P, J. Chem. Soc. Farad. Trans. 1 - Phys. Chem. Condensed Phases., 80, 2099 (1984)
  •  
  • 39. Awad MI, Saleh M, Ohsaka T, J. Solid State Electr., 12, 251 (2008)
  •  
  • 40. Zhang G, Sun S, Yang D, Dodelet JP, Sacher E, Carbon., 46, 196 (2008)
  •  
  • 41. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA, Ruoff RS, Carbon., 47, 145 (2009)
  •  
  • 42. Mori T, Tanaka K, Acta Metall., 21, 571 (1973)
  •  
  • 43. Benveniste Y, Mech. Mater., 6, 147 (1987)
  •  
  • 44. Odegard GM, Gates TS, J. Intell. Mater. Syst. Struct., 17, 239 (2006)
  •  
  • 45. Christensen RM, J. Mech. Phys. Solids., 38, 379 (1990)
  •  
  • 46. Tucker C, Liang E, Compos. Sci. Technol., 59, 655 (1999)
  •  
  • 47. Liu H, Brinson L, J. Appl. Mech., 73, 758 (2006)
  •  
  • 48. Luo JJ, Daniel IM, Compos. Sci. Technol., 63, 607 (2003)
  •  
  • 49. Shen L, Li JK, Proc. Roy. Soc. a - Math. Phys. Eng. Sci., 461, 2057 (2005)
  •  
  • 50. Maravelaki-Kalaitzaki P, Anglos D, Kilikoglou V, Zafiropulos V, Spectrochim. Acta B., 56, 887 (2001)
  •  
  • 51. Doherty B, Pamplona M, Selvaggi R, Miliani C, Matteini M, Sgamellotti A, Brunetti B, Appl. Surf. Sci., 253(10), 4477 (2007)
  •  
  • 52. Bams V, Dewaele S, Mater. Charact., 58, 1052 (2007)
  •  
  • 53. Hwang EH, Ko YS, Jeon JK, J. Ind. Eng. Chem., 14(2), 265 (2008)
  •  
  • 54. Williams JG, Compos. Sci. Technol., 70, 885 (2010)
  •  
  • 55. Stapountzi OA, Charalambides MN, Williams JG, Compos. Sci. Technol., 69, 2015 (2009)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2012; 36(3): 251-261

    Published online May 25, 2012

  • Received on Apr 26, 2011
  • Accepted on Jan 12, 2012