Article
  • High-Performance Ionic Polymer-Metal Composite Actuators Based on Nafion/Conducting Nanoparticulate Electrospun Webs
  • Jung YH, Lee JW, Yoo YT
  • 나피온/전도성 나노입자 전기방사 웹을 이용한 고성능 이온성 고분자-금속 복합체 구동기의 제조
  • 정요한, 이장우, 유영태
Abstract
To improve the performance of ionic polymer-metal composite (IPMC) actuators, Nafion films sandwiched with Nafion/conducting nanoparticulate electrospun webs were used as polymer electrolytes of IPMC. Multiwalled carbon nanotube (MWNT) and silver were the conducting nanoparticulates and the nanoparticles dispersed in a Nafion solution were electrospun. IPMCs with the Nafion/conducting nanoparticulate electrospun webs displayed improved displacements, response rates, and blocking forces. MWNT was superior to silver in terms of displacement and blocking force, and the webs without the conducting fillers also caused enhanced performances compared with the conventional IPMCs. These improvements were attributed to an elevated electrolyte flux through highly porous interlayers and capacitance induced by well dispersed conducting fillers, and low interfacial resistance between electrolyte and electrodes.

이온성 고분자-금속 복합체(ionic polymer-metal composite, IPMC) 구동기의 구동성능 향상을 위해 전기방사를 통해 제조된 나피온/전도성 나노입자 웹을 나피온 필름의 양면에 접합시켜 전해질막을 개질하였다. 전도성 나노입자는 다층탄소나노튜브(multiwalled carbon nanotube, MWNT)와 은 나노입자가 사용되었으며, 이를 각각 나피온 용액에 분산시켜 전기방사하였다. 개질된 IPMC는 향상된 구동변위, 응답속도 및 구동력을 나타내었으며 은 나노입자에 비해 MWNT가 더욱 뛰어난 구동변위와 구동력을 유도하였고, 전도성 나노입자가 포함되지 않은 전기방사 웹을 적용한 경우에도 성능향상이 관찰되었다. 제조된 IPMC의 우수한 구동성능은 전기방사 웹의 다공성에 의한 전해액 이동의 용이성, 고분산된 전도성 나노입자에 의해 유도된 높은 전기용량 및 낮은 전극 저항 때문인 것으로 분석되었다.

Keywords: ionic polymer-metal composites; actuator; electrospinning; multiwalled carbon nanotube; Nafion.

References
  • 1. Shahinpoor M, Kim KJ, Smart Mater. Struct., 13, 1362 (2004)
  •  
  • 2. Cohen YB, Leary S, Yavrouian A, Oguro K, Tadokoro S, Harrison J, Smith J, Su J, Proc. MRS Symposium, Boston, USA (1999)
  •  
  • 3. Shahinpoor M, Kim KJ, Smart Mater. Struct., 10, 819 (2001)
  •  
  • 4. Bennett MD, Leo DJ, Sens. Actuators A., 115, 79 (2004)
  •  
  • 5. Lee JW, Kim WS, Yoo YT, Polym.(Korea), 33(4), 377 (2009)
  •  
  • 6. Onishi K, Sewa S, Asaka K, Fujiwara N, Oguro K, Electrochim. Acta, 46(5), 737 (2000)
  •  
  • 7. Luqman M, Lee JW, Moona KK, Yoo YT, J. Ind. Eng. Chem., 17(1), 49 (2011)
  •  
  • 8. Han MJ, Park JH, Lee JY, Jho JY, Macromol. Rapid Commun., 27(3), 219 (2006)
  •  
  • 9. Lee JW, Kim JH, Goo NS, Lee JY, Yoo YT, J.Bionic Eng., 7, 19 (2010)
  •  
  • 10. Noh TG, Tak Y, Nam JD, Choi H, Electrochim. Acta, 47(13-14), 2341 (2002)
  •  
  • 11. Chung CK, Fung PK, Hong YZ, Ju MS, Lin CCK, Wu TC, Sens. Actuators B., 117, 367 (2006)
  •  
  • 12. Lee JW, Yoo YT, Sens. Actuators B., 159, 103 (2011)
  •  
  • 13. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S, Compos. Sci. Technol., 63, 2223 (2003)
  •  
  • 14. Choi SW, Jo SM, Lee WS, Kim YR, Adv. Mater., 15(23), 2027 (2003)
  •  
  • 15. Rana S, Cho JW, Fibers and Polymers., 12, 721 (2011)
  •  
  • 16. Doshi J, Reneker DH, J. Electrostat., 35, 151 (1995)
  •  
  • 17. Kickelbick G, Ed., Hybrid Materials-Synthesis, Characterization, and Applications, 1st ed., Wiley-VCH, Weinheim (2007)
  •  
  • 18. Sugino T, Kiyohara K, Takeuchi I, Mukai K, Asaka K, Sens. Actuators B., 141, 179 (2009)
  •  
  • 19. Baughman RH, Cui CX, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M, Science, 284(5418), 1340 (1999)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2012; 36(4): 434-439

    Published online Jul 25, 2012

  • Received on Dec 7, 2011
  • Accepted on Feb 8, 2012