Article
  • Bulk Polymerization of L-lactide Using Aluminium Organometallic Compound Supported on Functionalized Silica
  • Yoo JY, Ko YS
  • 표면 기능화된 실리카에 담지된 Al 유기금속화합물을 이용한 L-lactide 벌크중합 특성 연구
  • 유지연, 고영수
Abstract
In this study aluminum isopropyl oxide (Al(O-i-Pr)3) was supported on the amine-functionalized surface of silica to synthesize high molecular weight (MW) polylactide (PLA), and it was tested for PLA polymerization behaviors. A silica was funtionalized with silane compound having amine groups, then in-situ treated with Al(O-i-Pr)3. Al(O-i-Pr)3 attached to amine group on silica showed activity only in the presence of MAO (methyl aluminoxane). At the polymerization temperature of 115 ℃, the conversion and the MW of PLA were increased as the amount of silane was increased. At the polymerization temperature of 130 ℃, the conversion was decreased while the MW was increased drastically and reached to MW 44000 g/mol when the amine concentration was 3.0 mmol/g. A bimodal type GPC curve was shown at the polymerization temperature of 115 ℃. As the amount of amine group increased, the peaks of GPC curve were merged. At the polymerization of 130 ℃, a unimodal GPC curve was shown. Al(O-i-Pr)3 supported on amine-functionalized silica was able to produce higher MW PLA with enhanced activity compared to homogeneous Al(O-i-Pr)3.

본 연구에서는 높은 분자량의 polylactide(PLA)를 중합하기 위하여 aluminum isopropyl oxide(Al(O-i-Pr)3)를 아민기로 표면 기능화된 실리카에 담지하고 이를 촉매로 이용하여 생성된 PLA의 중합특성을 확인하였다. 담지촉매는 먼저 실리카 표면을 아민기를 갖는 실란화합물로 기능화한 후 Al(O-i-Pr)3을 in-situ 합성하였다. 기능기에 담지된 Al(O-i-Pr)3는 MAO(methyl aluminoxane) 존재하에 중합활성을 보였다. 115 ℃에서는 표면 기능화된 아민기양이 증가할수록 전환율과 분자량이 증가하였고, 130 ℃에서는 표면 기능화된 아민기양이 증가할수록 전환율은 감소하였으나 분자량은 크게 증가하여 표면 기능화된 아민기양이 3.0 mmol일 경우 44000 g/mol로 가장 높은 분자량을 얻었다. GPC curve를 통해 115 ℃ 중합온도에서는 분자량 분포곡선이 bimodal 형태에서 저분자량 부분이 크게 증가하여 shoulder 형태로 변화하였으며 130 ℃에서는 GPC 단일피크를 보였다. 균일계 Al(O-i-Pr)3 촉매보다 아민기로 표면 기능화된 실리카에 담지된 Al(O-i-Pr)3 촉매가 더 높은 활성과 고분자량의 PLA를 합성할 수 있었다.

Keywords: PLA; surface functionalization; silane; amine; aluminium complex.

References
  • 1. Willke T, Vorlop KD, Appl. Microbiol. Biotechnol., 66(2), 131 (2004)
  •  
  • 2. Shen L, Worrell E, Patel M, Biofuel. Bioprod. Bior., 4, 25 (2010)
  •  
  • 3. Yadav AK, Chaudhari AB, Kothari RM, Crit. Rev.Biotechnol., 31, 1 (2011)
  •  
  • 4. Tokiwa Y, Calabia BP, J. Polym. Environ., 15, 259 (2007)
  •  
  • 5. Sarazin P, Roy X, Favis BD, Biomaterials., 25, 5965 (2004)
  •  
  • 6. Jamshidi K, Hyon SH, Ikada Y, Polymer., 29, 2229 (1988)
  •  
  • 7. Li HB, Huneault MA, Polymer, 48(23), 6855 (2007)
  •  
  • 8. Drumright RE, Gruber PR, Henton DE, Adv. Mater., 12(23), 1841 (2000)
  •  
  • 9. Garlotta D, J. Polym. Environ., 9, 63 (2001)
  •  
  • 10. Kowalski A, Libiszowski J, Biela T, Cypryk M, Duda A, Penczek S, Macromolecules, 38(20), 8170 (2005)
  •  
  • 11. Kowalski A, Duda A, Penczek S, Macromolecules, 31(7), 2114 (1998)
  •  
  • 12. Kim E, Shin EW, Yoo IK, Chung JS, Hong YJ, Kim YJ, Macromol. Res., 17(5), 346 (2009)
  •  
  • 13. Williams CK, Breyfogle LE, Choi SK, Nam W, Young VG, Hillmyer MA, Tolman WB, J. Am. Chem. Soc., 125(37), 11350 (2003)
  •  
  • 14. Chuang HJ, Weng SF, Chang CC, Lin CC, Chen HY, Dalton Trans., 40, 9601 (2011)
  •  
  • 15. Prebe A, Alcouffe P, Cassagnau P, Gerard JF, Mater. Chem. Phys., 124(1), 399 (2010)
  •  
  • 16. Yan SF, Yin JB, Yang Y, Dai ZZ, Ma J, Chen XS, Polymer, 48(6), 1688 (2007)
  •  
  • 17. Khanna A, Sudha YS, Pillai S, Rath SS, J. Mol. Model., 14, 367 (2008)
  •  
  • 18. Furukawa T, Sato H, Murakami R, Zhang JM, Duan YX, Noda I, Ochiai S, Ozaki Y, Macromolecules, 38(15), 6445 (2005)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2012; 36(6): 693-698

    Published online Nov 25, 2012

  • Received on Mar 8, 2012
  • Accepted on Jun 11, 2012