Article
  • Synthesis of UV Curable 4,4'-Thiodibenzenethiol-based Epoxy Acrylate and Their Refractive Index Behavior
  • Baek SS, Lee SW, Hwang SH
  • 4,4'-Thiodibenzenethiol을 이용한 광경화형 에폭시 아크릴레이트 합성과 굴절률에 관한 연구
  • 백승석, 이상원, 황석호
Abstract
UV-curable high refractive index di-functional epoxy acrylate, 4,4'-thiodibenzenethiol diglycidyl ether diacrylate, was synthesized from acrylic acid and 4,4'-thiodibenzenethiol diglycidyl ether that was obtained by reacting 4,4'-thiodibenzenethiol and epichlorohydrin using a direct method (Taffy process). Its chemical structure was identified by 1H NMR and FTIR. After its dilution with a reactive diluent, 2-phenoxythiol ethyl acrylate as 5, 10, 15, 20, and 30 wt% content, the relationship between their viscosity and refractive index was investigated. Their degree of cure decreased with increasing the amount of reactive diluent, and the refractive index of UV-cured film increased with increasing the degree of cure.

4,4'-Thiodibenzenethiol을 기반으로 이관능 에폭시 수지인 4,4'-thiodibenzenethiol diglycidyl ether를 직접합성법으로 합성하였다. 합성된 에폭시 수지가 광경화가 가능하도록 acrylic acid와 반응시켜 광경화형 고굴절 이관능 에폭시 아크릴레이트인 4,4'-thiodibenzenethiol diglycidyl ether diacrylate를 합성하였으며 1H NMR과 FTIR을 이용하여 화학구조를 확인하였다. 이관능 에폭시 아크릴레이트와 함께 반응성 희석제인 2-phenoxythiol ethyl acrylate를 5, 10, 15, 20, 30 wt% 희석하여 점도와 굴절률과의 상관관계를 확인하였으며 광경화 후 경화필름의 굴절률 변화를 고찰 하였다. 반응성 희석제의 농도가 증가함에 따라 경화물의 경화도가 낮아졌으며, 경화도가 클수록 경화 후 굴절률은 높아지는 경향을 확인하였다.

Keywords: epoxy acrylate; 4,4'-thiodibenzenethiol diglycidyl ether; Taffy process; UV-curing; refractive index; degree of cure.

References
  • 1. Shobha HK, Johnson H, Sankarapandian M, Kim YS, Rangarajan P, Baird DG, McGrath JE, J. Polym. Sci. A: Polym. Chem., 39(17), 2904 (2001)
  •  
  • 2. Groh W, Zimmermann A, Macromolecules., 24, 6660 (1991)
  •  
  • 3. Nebioglu A, Leon JA, Khudyakov IV, Ind. Eng. Chem. Res., 47(7), 2155 (2008)
  •  
  • 4. Amey DS, Wood TE, U.S. Patent 6,432,526 B1 (2002)
  •  
  • 5. Wen J, Wilkes GL, Chem. Mater., 8, 1667 (1996)
  •  
  • 6. Decker C, Viet TNT, Decker D, Weber-Koehl E, Polymer, 42(13), 5531 (2001)
  •  
  • 7. Otsubo Y, Amari T, Watanabe K, J. Appl. Polym. Sci., 29, 4071 (1984)
  •  
  • 8. Matynia T, Kutyla R, Bukat K, Pienkowska B, J. Appl. Polym. Sci., 55(11), 1583 (1995)
  •  
  • 9. Bajpai M, Shukla V, Kumar A, Prog. Org. Coat., 44, 271 (2002)
  •  
  • 10. Maruno T, Ishibashi S, Nakamura K, J. Polym. Sci. A: Polym. Chem., 32(16), 3211 (1994)
  •  
  • 11. Ali MA, Khan MA, Ali KM, J. Appl. Polym. Sci., 60(6), 879 (1996)
  •  
  • 12. Yoo JW, Kim DS, Polym.(Korea), 23(3), 376 (1999)
  •  
  • 13. Kim HD, Lee DJ, Choi JH, Park CC, Polym.(Korea), 18(1), 38 (1994)
  •  
  • 14. Lee KH, Kim BK, Korea Polym. J., 4(1), 1 (1996)
  •  
  • 15. Kim HD, Kang SG, Ha CS, J. Appl. Polym. Sci., 46, 1339 (1992)
  •  
  • 16. Bongiovanni R, Malucelli G, Sangermano M, Priola A, Prog. Org. Coat., 36, 70 (1999)
  •  
  • 17. Shi WF, Ranby B, J. Appl. Polym. Sci., 51(6), 1129 (1994)
  •  
  • 18. Williams TR, J. Appl. Polym. Sci., 31, 1293 (1986)
  •  
  • 19. Kumar A, Gupta SK, Reaction Engineering of Step Growth Polymerization, Plenum, New York (1987)
  •  
  • 20. Dizman C, Ates S, Torun L, Yagci Y, Beilstein J. Org.Chem.doi:10.3762/bjoc.6.56, 6(56) (2010)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2013; 37(1): 121-126

    Published online Jan 25, 2013

  • Received on Nov 13, 2012
  • Accepted on Nov 25, 2012