Article
  • Study on the Changes of Cellulose Molecular Weight and α-Cellulose Content by the Extrusion Conditions of Cellulose-NMMO Hydrate Solution
  • Kim DB
  • 셀룰로오스-NMMO 수화물 용액의 압출가공 조건에 따른 셀룰로오스 분자량과 알파 셀룰로오스 함량 변화에 대한 연구
  • 김동복
Abstract
During extruder processing to manufacture cellulose fiber and film using cellulose-NMMO pre-dope produced by a new method, it seems to occur the changes of molecular weight and α-cellulose content of cellulose upon thermal and mechanical degradation. In an extruder making cellulose solutions from the pre-dope obtained by high-speed mixer, the changes of cellulose molecular weight and α-cellulose content resulted with the variations of processing temperature, concentration of cellulose, and residence time. The molecular weight and α-cellulose content of cellulose decreased with decreasing cellulose concentration and increasing processing temperature. At 15% concentration and short residence time region, the change of α-cellulose content was so high due to high-shear with an increase in temperature. From these processing conditions, the variations of α-cellulose content and molecular weight showed different behaviors, and these processing conditions for making cellulose solution were found to be important factors.

새로운 방법에 의하여 제조된 셀룰로오스-NMMO pre-dope를 이용한 셀룰로오스 섬유 및 필름 제조를 위한 압출가공 시 열분해 및 기계적 분해에 따른 셀룰로오스의 분자량 및 알파 셀룰로오스 함량 변화에 대하여 고찰하였다. 고속분쇄에 의해 제조된 pre-dope를 압출기에 통과시켜 용액으로 제조할 때 가공온도, 셀룰로오스의 농도 및 체제시간에 따라 셀룰로오스의 분자량 및 알파 셀룰로오스 함량 변화가 다양하게 나타났다. 셀룰로오스의 분자량과 알파 셀룰로오스 함량은 셀룰로오스의 농도가 낮을수록 온도가 높을수록 감소하였다. 셀룰로오스 농도 15% 및 짧은 체제시간 영역에서 알파 셀룰로오스 함량은 높은 전단으로 인해 온도가 높을수록 가장 큰 변화를 보였다. 다양한 가공조건으로부터 알파 셀룰로오스 함량변화 거동은 분자량 변화와 다른 거동을 보였으며 셀룰로오스 용액 제조를 위한 압출가공조건이 중요 요인임을 알 수 있었다.

Keywords: cellulose; N-methylmorpholine N-oxide (NMMO); fiber & film; molecular weight; α-cellulose content.

References
  • 1. Turbak AF, Hammer RB, Davies RE, Hergert HL, CHEMTECH., 51 (1980)
  •  
  • 2. Chegolya AS, Grinshpan DD, Burd EZ, Textile Research J., 59, 501 (1989)
  •  
  • 3. Audemars G, Br. Patent 283 (1855)
  •  
  • 4. Chardonnet HB, Fr. Patent 165,349 (1884)
  •  
  • 5. Cross CF, Bevan EJ, Beadle C, Br. Patent 8,700 (1892)
  •  
  • 6. Despaissis LH, Fr. Patent 203,741 (1890)
  •  
  • 7. Nicholson M, Johnson DC, U.S. Patent 4,097,666 (1978)
  •  
  • 8. Hammer RB, Turbak AF, Davies RE, Portnoy NAU.S. Patent 4,022,631 (1977)
  •  
  • 9. Johnson DC, Cellulose Chemistry and Its Application, Northwood, N.Y. (1985)
  •  
  • 10. Johnson DL, U.S. Patent 3,447,939 (1969)
  •  
  • 11. Cole D, Jones A, Lenzinger Berichte., 69, 73 (1990)
  •  
  • 12. Davies S, Textile Horizones., Feb., 62 (1989)
  •  
  • 13. Chun SW, Lee WS, Jo SM, Kim JD, J. Korean Fiber Soc., 29, 44 (1992)
  •  
  • 14. Lee WS, Jo SM, Kang HJ, Kim DB, Park JS, U.S. Patent 5,584,919 (1996)
  •  
  • 15. Chanzy H, Nawrot S, Peguy A, Smith P, J. Polym. Sci.Polym. Phys. Ed., 20, 1909 (1982)
  •  
  • 16. Chanzy H, Peguy A, J. Polym. Sci. Polym. Lett. Ed., 17, 219 (1979)
  •  
  • 17. Maia E, Perez S, Acta Crystallogr., B38, 849 (1982)
  •  
  • 18. McCorsley CC III, Varga JK U.S. Patent 4,211,574 (1980)
  •  
  • 19. McCorsley CC III, Varga JK U.S. Patent 4,142,913 (1979)
  •  
  • 20. McCorsley CC III, U.S. Patent 4,144,080 (1979)
  •  
  • 21. Chanzy H, Noe P, Paillet M, Smith P, J. Appl. Polym. Sci.Appl. Polym. Symp., 37, 239 (1983)
  •  
  • 22. Kim DB, Jo SM, Lee WS, Pak JJ, J. Appl. Polym. Sci., 93(4), 1687 (2004)
  •  
  • 23. Kim DB, Lee WS, Kang HJ, Polym.(Korea), 22(5), 770 (1998)
  •  
  • 24. Lee WS. Kim BC, Jo SM, Park JS, Lee SJ, Park YG, Lee SL, Oh YS, U.S. Patent 6,153,003 (2000)
  •  
  • 25. Park SH, Jeong YH, Lee WS, Kang HJ, Polym.(Korea), 22(5), 779 (1998)
  •  
  • 26. Raven G, International Fiber J., 6, 10 (1993)
  •  
  • 27. Lee WS, Jo SM, Chem. Fibers Int., 49, 46 (1999)
  •  
  • 28. Kim DB, Lee WS, Kim BC, Jo SM, Park JS, Lee YM, Polym.(Korea), 22(2), 231 (1998)
  •  
  • 29. Loubinoux LD, Lenzinger Berichte., 59, 105 (1985)
  •  
  • 30. Mark M, Macromol. Chem., 16, 157 (1955)
  •  
  • 31. Conner O, “X-ray Diffraction”, in Instrumental Analysis of Cotton Cellulose and Modified Cotton Cellulose, Dekker, N. Y., Chap. 6, 339 (1972)
  •  
  • 32. Navard P, Haudin JM, Brit. Polym. J., 12, 174 (1980)
  •  
  • 33. Lee WS, Jo SM, Kim DB, Lee YM, Kim BC, Korean J. Rheol., 10(1), 44 (1998)
  •  
  • 34. Blachot JF, Brunet N, Navard P, Cavaille JY, Rheol. Acta, 37(2), 107 (1998)
  •  
  • 35. Zhang HH, Zhang YP, Shao HL, Hu XC, J. Appl. Polym. Sci., 94(2), 598 (2004)
  •  
  • 36. Zhang HR, Liu XY, Li DS, Li RX, Polym. Eng. Sci., 49(3), 554 (2009)
  •  
  • 37. Eckelt J, Knopf A, Roder T, Weber HK, Sixta H, Wolf BA, J. Appl. Polym. Sci., 119(2), 670 (2011)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2013; 37(3): 362-372

    Published online May 25, 2013

  • Received on Dec 5, 2012
  • Accepted on Jan 30, 2013