Article
  • Characterization of Poly(lactic acid) Foams Prepared with Supercritical Carbon Dioxide
  • Shin JH, Lee HK, Song KB, Lee KH
  • 초임계 이산화탄소를 이용하여 제조한 Poly(lactic acid) 발포체의 특성 분석
  • 신지희, 이현규, 송권빈, 이광희
Abstract
The foams of a poly(lactic acid) modified by the reactive compounding were produced with the batch foaming technique using supercritical CO2. Experiments were performed at 105~135 ℃ and 12~24 MPa. The blowing ratio and foam structure were significantly affected by changing the temperature and pressure conditions in the foaming process. The blowing ratio first increased with increasing foaming temperature and saturation pressure, reached a maximum and then decreased with a further increase in the foaming temperature and saturation pressure. Decreasing the rate of depressurization permitted a longer period of cell growth and therefore larger microcellular structures were obtained.

반응 컴파운딩으로 개질한 poly(lactic acid)를 초임계 CO2(scCO2)를 사용하여 발포하였다. 발포는 105~135 ℃ 와 12~24 MPa 범위에서 실시하였다. 발포체의 발포 배율과 셀 구조는 온도, 압력 및 감압 속도와 같은 발포 조건에 크게 영향을 받았다. 발포 온도와 포화 압력 증가에 따라서 발포 배율은 증가하다가 감소하였으며, 그 결과로 120 ℃ 발포 온도 및 20 MPa 포화 압력에서 최대 발포 배율이 얻어졌다. 감압 속도가 느린 경우에는 셀이 장시간 동안 팽창함으로써 보다 큰 셀 구조를 가지는 발포체가 얻어졌다.

Keywords: poly(lactic acid); supercritical carbon dioxide; foam; blowing ratio; cell structure.

References
  • 1. Hwang DY, Han KD, Hong D, Lee KI, Lee KY, Polym.(Korea), 24(4), 529 (2000)
  •  
  • 2. Yang G, Su J, Gao J, Hu X, Geng C, Fu Q, J. Supercrit. Fluids., 73, 1 (2013)
  •  
  • 3. Yang JT, Wu MJ, Chen F, Fei ZD, Zhong MQ, J. Supercrit. Fluids, 56(2), 201 (2011)
  •  
  • 4. Sauceau M, Fages J, Common A, Nikitine C, Rodier E, Prog. Polym. Sci., 36, 749 (2011)
  •  
  • 5. Jacobs MA, Kemmere MF, Keurentjes JTF, Polymer, 45(22), 7539 (2004)
  •  
  • 6. Zhu B, Zha WB, Yang JT, Zhang CL, Lee LJ, Polymer, 51(10), 2177 (2010)
  •  
  • 7. Lee M, Park CB, Tzoganakis C, Polym. Eng. Sci., 99, 99 (1999)
  •  
  • 8. Goel SK, Beckman EJ, Polym. Eng. Sci., 34(14), 1137 (1994)
  •  
  • 9. Klempner D, Frisch K, Handbook of Polymeric Foams and Foam Technology, Oxford Univ. Press, New York (1991)
  •  
  • 10. Guan LT, Xiao M, Meng YZ, Li RKY, Polym. Eng. Sci., 46(2), 153 (2006)
  •  
  • 11. Lenz RW, Adv. Polym. Sci., 107, 1 (1993)
  •  
  • 12. Bello D, Smith TJ, Woskie SR, Streicher RP, Boeniger MF, Redlich CA, Liu Y, J. Environ. Monit., 8, 525 (2006)
  •  
  • 13. Xu ZM, Jiang XL, Liu T, Hu GH, Zhao L, Zhu ZN, Yuan WK, J. Supercrit. Fluids, 41(2), 299 (2007)
  •  
  • 14. Lilaonitkul A, West JC, Cooper SL, J. Macromol. Sci. Phys., B12, 563 (1976)
  •  
  • 15. Goel SK, Beckman EJ, Polym. Eng. Sci., 34(14), 1148 (1994)
  •  
  • 16. Nalawade SP, Picchioni F, Janssen LOBM, Prog.Polym. Sci., 31, 29 (2006)
  •  
  • 17. Li B, Zhu XY, Hu GH, Liu T, Cao GP, Zhao L, Yuan WK, Polym. Eng. Sci., 48(8), 1608 (2008)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2013; 37(6): 685-693

    Published online Nov 25, 2013

  • Received on May 15, 2013
  • Accepted on Jul 26, 2013